Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install streamlit
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Check if CUDA is available and set the device accordingly
|
7 |
+
# device = 0 if torch.cuda.is_available() else -1
|
8 |
+
|
9 |
+
# Initialize the Phi model pipeline
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
return pipeline(
|
13 |
+
"text-generation",
|
14 |
+
model="microsoft/phi-2",
|
15 |
+
torch_dtype=torch.bfloat16,
|
16 |
+
# device=device,
|
17 |
+
)
|
18 |
+
|
19 |
+
phi_model = load_model()
|
20 |
+
|
21 |
+
# Function to generate response
|
22 |
+
def generate_response(prompt, max_length=512):
|
23 |
+
response = phi_model(prompt, max_length=max_length, do_sample=True, temperature=0.7)
|
24 |
+
return response[0]['generated_text']
|
25 |
+
|
26 |
+
# Streamlit UI
|
27 |
+
st.title("Chain of Thought vs Traditional Reasoning - Phi Model")
|
28 |
+
|
29 |
+
# User input
|
30 |
+
user_question = st.text_input("Enter your question:")
|
31 |
+
|
32 |
+
if user_question:
|
33 |
+
# Generate responses
|
34 |
+
with st.spinner("Generating responses..."):
|
35 |
+
traditional_prompt = f"Question: {user_question}\nAnswer:"
|
36 |
+
cot_prompt = f"Question: {user_question}\nLet's approach this step by step:\n1)"
|
37 |
+
|
38 |
+
traditional_response = generate_response(traditional_prompt)
|
39 |
+
cot_response = generate_response(cot_prompt)
|
40 |
+
|
41 |
+
# Display results
|
42 |
+
st.subheader("Traditional Output")
|
43 |
+
st.write(traditional_response)
|
44 |
+
|
45 |
+
st.subheader("Chain of Thought Reasoning")
|
46 |
+
st.write(cot_response)
|
47 |
+
|
48 |
+
# Add explanatory text
|
49 |
+
st.markdown("""
|
50 |
+
## About this demo
|
51 |
+
This demo showcases the difference between traditional output and chain of thought (CoT) reasoning using the Phi-2 model from Microsoft.
|
52 |
+
|
53 |
+
- **Traditional Output**: Provides a direct answer to the question.
|
54 |
+
- **Chain of Thought Reasoning**: Shows the step-by-step thought process leading to the answer.
|
55 |
+
|
56 |
+
CoT reasoning often results in more detailed and transparent explanations, which can be helpful for complex problems or when understanding the reasoning process is important.
|
57 |
+
""")
|