Spaces:
No application file
No application file
EddyGiusepe
commited on
Commit
•
c9db2c1
1
Parent(s):
c0fffe0
testando
Browse files- .gitignore +4 -0
- Disaster_GPT4-turbo.ipynb +349 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# EddyGiusepe
|
2 |
+
venv_GPT4_Disaster/
|
3 |
+
.env
|
4 |
+
|
Disaster_GPT4-turbo.ipynb
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"<h1 align=\"center\"><font color=\"yellow\">Researching a Humanitarian Disaster Situation Report Chatbot — Using GPT-4-Turbo and full-context prompting</font></h1>"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"<font color=\"yellow\">Data Scientist.: Dr.Eddy Giusepe Chirinos Isidro</font>"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {},
|
20 |
+
"source": [
|
21 |
+
"Link de estudo:\n",
|
22 |
+
"\n",
|
23 |
+
"* [Tutorial Disaster Situation](https://towardsdatascience.com/researching-a-humanitarian-disaster-situation-report-chatbot-using-gpt-4-turbo-and-full-context-f742203d495a)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"Aqui vamos analisar (seguindo o tutorial, acima) [Relatórios de Situações de Desastres Humanitários na incrível plataforma ReliefWeb](https://reliefweb.int/disasters). \n",
|
31 |
+
"\n",
|
32 |
+
"Estes relatórios (conhecidos como “Sitreps”) são vitais para monitorizar e reagir a catástrofes humanitárias em todo o mundo.\n",
|
33 |
+
"\n",
|
34 |
+
"\n",
|
35 |
+
"Usaremos a [ReliefWeb API](https://reliefweb.int/help/api)."
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 1,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"import openai\n",
|
45 |
+
"\n",
|
46 |
+
"# Substitua sua chave de API OpenAI:\n",
|
47 |
+
"import openai\n",
|
48 |
+
"import os\n",
|
49 |
+
"from dotenv import load_dotenv, find_dotenv\n",
|
50 |
+
"_ = load_dotenv(find_dotenv()) # read local .env file\n",
|
51 |
+
"openai.api_key = os.environ['OPENAI_API_KEY']\n",
|
52 |
+
"\n",
|
53 |
+
"model = \"gpt-3.5-turbo-1106\"\n",
|
54 |
+
"\n",
|
55 |
+
"def run_llm(query, system_prompt, reference_content):\n",
|
56 |
+
"\n",
|
57 |
+
" llm_query = {\n",
|
58 |
+
" \"temperature\": 0.0,\n",
|
59 |
+
" \"max_tokens\": 1000,\n",
|
60 |
+
" \"top_p\": 0.95,\n",
|
61 |
+
" \"frequency_penalty\": 0,\n",
|
62 |
+
" \"presence_penalty\": 0,\n",
|
63 |
+
" }\n",
|
64 |
+
"\n",
|
65 |
+
" response = openai.ChatCompletion.create(\n",
|
66 |
+
" model=model,\n",
|
67 |
+
" messages=[ {\n",
|
68 |
+
" \"role\":\"system\",\n",
|
69 |
+
" \"content\": system_prompt\n",
|
70 |
+
" },\n",
|
71 |
+
" {\n",
|
72 |
+
" \"role\":\"user\",\n",
|
73 |
+
" \"content\": query\n",
|
74 |
+
" }\n",
|
75 |
+
" ],\n",
|
76 |
+
" temperature=llm_query['temperature'],\n",
|
77 |
+
" max_tokens=llm_query['max_tokens'],\n",
|
78 |
+
" top_p=llm_query['top_p'],\n",
|
79 |
+
" frequency_penalty=llm_query['frequency_penalty'],\n",
|
80 |
+
" presence_penalty=llm_query['presence_penalty'],\n",
|
81 |
+
" stop=None\n",
|
82 |
+
" ) \n",
|
83 |
+
"\n",
|
84 |
+
" answer = response['choices'][0]['message']['content']\n",
|
85 |
+
" return answer\n"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": null,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"import requests \n",
|
95 |
+
"import os \n",
|
96 |
+
"from bs4 import BeautifulSoup \n",
|
97 |
+
"import re\n",
|
98 |
+
"import pandas as pd\n",
|
99 |
+
"import PyPDF2 \n",
|
100 |
+
"import traceback\n",
|
101 |
+
"import json\n",
|
102 |
+
"import ast\n",
|
103 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
104 |
+
"import tiktoken\n",
|
105 |
+
"\n",
|
106 |
+
"from googletrans import Translator\n",
|
107 |
+
"translator = Translator()\n",
|
108 |
+
"\n",
|
109 |
+
"\n",
|
110 |
+
"def auto_translate(text):\n",
|
111 |
+
" \"\"\"\n",
|
112 |
+
" This function automatically detects language and translates to english \n",
|
113 |
+
"\n",
|
114 |
+
" Parameters:\n",
|
115 |
+
" text(str): The text to be translated\n",
|
116 |
+
"\n",
|
117 |
+
" Returns:\n",
|
118 |
+
" text (str): Translated text if in another language, otherwise \n",
|
119 |
+
" input text\n",
|
120 |
+
" \"\"\"\n",
|
121 |
+
" try:\n",
|
122 |
+
" lang = translator.detect(text)\n",
|
123 |
+
" lang = lang.lang\n",
|
124 |
+
" print(f\"Linguagem detectado: {lang}\")\n",
|
125 |
+
" q = translator.translate(text, dest='pt')\n",
|
126 |
+
" text = q.text\n",
|
127 |
+
" except Exception as e:\n",
|
128 |
+
" print(\"An exception occurred trying to translate\")\n",
|
129 |
+
" return text\n",
|
130 |
+
"\n",
|
131 |
+
"def get_safe_name(name):\n",
|
132 |
+
" \"\"\"\n",
|
133 |
+
" This function takes a string and returns a version of it that is \n",
|
134 |
+
" safe to use as a filename.\n",
|
135 |
+
"\n",
|
136 |
+
" Parameters:\n",
|
137 |
+
" name (str): The string to be converted to a safe filename.\n",
|
138 |
+
"\n",
|
139 |
+
" Returns:\n",
|
140 |
+
" name (str): The safe filename.\n",
|
141 |
+
" \"\"\"\n",
|
142 |
+
" name = str(name)\n",
|
143 |
+
" name = re.sub(\"[^0-9a-zA-Z]+\", \"_\", name)\n",
|
144 |
+
" name = re.sub(r\"_$\",\"\", name)\n",
|
145 |
+
" if len(name) == 0:\n",
|
146 |
+
" name = 'Unknown' \n",
|
147 |
+
" return name\n",
|
148 |
+
"\n",
|
149 |
+
"def download_pdf(url, download_path): \n",
|
150 |
+
" \"\"\"\n",
|
151 |
+
" Function to download a PDF from a URL and save locally\n",
|
152 |
+
"\n",
|
153 |
+
" Parameters:\n",
|
154 |
+
" url (str): Location of online PDF file\n",
|
155 |
+
" download_path (str): Folder where to save PDF\n",
|
156 |
+
"\n",
|
157 |
+
" \"\"\"\n",
|
158 |
+
" response = requests.get(url) \n",
|
159 |
+
" with open(download_path, 'wb') as f: \n",
|
160 |
+
" f.write(response.content) \n",
|
161 |
+
" \n",
|
162 |
+
"def save_text(content, file_path): \n",
|
163 |
+
" \"\"\"\n",
|
164 |
+
" Function to save text to local file\n",
|
165 |
+
"\n",
|
166 |
+
" Parameters:\n",
|
167 |
+
" content (str): Text to save\n",
|
168 |
+
" file_path (str): Folder where to save \n",
|
169 |
+
" \"\"\"\n",
|
170 |
+
" with open(file_path, 'w') as file: \n",
|
171 |
+
" print(f'Saving {file_path}')\n",
|
172 |
+
" file.write(content) \n",
|
173 |
+
" \n",
|
174 |
+
"def extract_text_from_pdf(pdf_path): \n",
|
175 |
+
" \"\"\"\n",
|
176 |
+
" Function to extract text from PDF file\n",
|
177 |
+
"\n",
|
178 |
+
" Parameters:\n",
|
179 |
+
" pdf_path (str): Path to PDF file\n",
|
180 |
+
"\n",
|
181 |
+
" Returns:\n",
|
182 |
+
" text (str): Text extracted from PDF file\n",
|
183 |
+
" \"\"\"\n",
|
184 |
+
" print(pdf_path)\n",
|
185 |
+
" pdf_reader = PyPDF2.PdfReader(pdf_path) \n",
|
186 |
+
" text = '' \n",
|
187 |
+
" for page_num in range(len(pdf_reader.pages)): \n",
|
188 |
+
" page_obj = pdf_reader.pages[page_num]\n",
|
189 |
+
" text += page_obj.extract_text() \n",
|
190 |
+
" return text \n",
|
191 |
+
"\n",
|
192 |
+
"def get_rw_data(keyword, filter, sort, fields, endpoint, limit=10, \\\n",
|
193 |
+
" save_body_to_text=False): \n",
|
194 |
+
" \"\"\"\n",
|
195 |
+
" Function to extract data from ReliefWeb API. For API details see:\n",
|
196 |
+
"\n",
|
197 |
+
" https://apidoc.rwlabs.org/?utm_medium=blog&utm_source=reliefweb+website&utm_campaign=api+doc+launching+2016_06\n",
|
198 |
+
"\n",
|
199 |
+
" Parameters:\n",
|
200 |
+
" keyword (str): Search string\n",
|
201 |
+
" filter (dict): ReliefWeb filter json\n",
|
202 |
+
" sort (dict): ReliefWeb sort json\n",
|
203 |
+
" fields (list): List of fields to return\n",
|
204 |
+
" endpoint (str): API Endpoint, eg reports, disasters\n",
|
205 |
+
" limit (int): Maximum records to return\n",
|
206 |
+
" save_body_to_text (bool) : Flag to save body to text file, including any PDFs on page\n",
|
207 |
+
"\n",
|
208 |
+
" Returns:\n",
|
209 |
+
" all_data (pandas dataframe): Dataframe of data from API\n",
|
210 |
+
" \"\"\"\n",
|
211 |
+
" query = { \n",
|
212 |
+
" \"appname\": \"myapp\", \n",
|
213 |
+
" \"query\": { \n",
|
214 |
+
" \"value\": keyword\n",
|
215 |
+
" }, \n",
|
216 |
+
" \"filter\":filter,\n",
|
217 |
+
" \"sort\": sort,\n",
|
218 |
+
" \"limit\": limit, \n",
|
219 |
+
" \"fields\": fields\n",
|
220 |
+
" } \n",
|
221 |
+
"\n",
|
222 |
+
" reliefweb_api_url =\"https://api.reliefweb.int/v1/reports\" # Eddy Adicionou\n",
|
223 |
+
"\n",
|
224 |
+
" endpoint = f\"{reliefweb_api_url}/{endpoint}?appname=apidoc&query[value]=\"\n",
|
225 |
+
" print(f\"Getting {endpoint} ...\")\n",
|
226 |
+
" \n",
|
227 |
+
" all_data =[]\n",
|
228 |
+
" response = requests.post(endpoint, json=query) \n",
|
229 |
+
" if response.status_code == 200: \n",
|
230 |
+
" data = response.json() \n",
|
231 |
+
" for article in data[\"data\"]: \n",
|
232 |
+
" article_url = article['fields']['url'] \n",
|
233 |
+
" try:\n",
|
234 |
+
" r = article['fields']\n",
|
235 |
+
" print(article_url)\n",
|
236 |
+
" article_response = requests.get(article_url) \n",
|
237 |
+
" if save_body_to_text:\n",
|
238 |
+
" soup = BeautifulSoup(article_response.text, 'html.parser') \n",
|
239 |
+
" main_content = [p.text for p in soup.find_all('p')] \n",
|
240 |
+
" article_text = ' '.join(main_content)\n",
|
241 |
+
" save_text(article_text, docs_folder + '/{}.txt'.format(get_safe_name(article['fields']['title']))) \n",
|
242 |
+
" for link in soup.find_all('a'): \n",
|
243 |
+
" href = link.get('href') \n",
|
244 |
+
" if href.endswith('.pdf'): \n",
|
245 |
+
" download_path = os.path.join(docs_folder, href.split('/')[-1]) \n",
|
246 |
+
" if href.startswith('/attachments'):\n",
|
247 |
+
" pdf_url = f'{reliefweb_pdf_url}{href}'\n",
|
248 |
+
" else:\n",
|
249 |
+
" pdf_url = href\n",
|
250 |
+
" download_pdf(pdf_url, download_path) \n",
|
251 |
+
" print(f\". Downloaded PDF {download_path} from {pdf_url}\")\n",
|
252 |
+
" article_text = extract_text_from_pdf(download_path)\n",
|
253 |
+
" r['article_text'] = article_text\n",
|
254 |
+
" r['reliefweb_query'] = keyword\n",
|
255 |
+
" all_data.append(r)\n",
|
256 |
+
" except Exception as e:\n",
|
257 |
+
" print(f\"An exception occurred trying to extract {article_url}\")\n",
|
258 |
+
" tb_str = ''.join(traceback.format_exception(None, e, e.__traceback__))\n",
|
259 |
+
" print(tb_str)\n",
|
260 |
+
"\n",
|
261 |
+
" all_data = pd.DataFrame(all_data)\n",
|
262 |
+
" for f in ['disaster','theme']:\n",
|
263 |
+
" if f in list(all_data.columns):\n",
|
264 |
+
" all_data[f] = all_data[f].astype(str)\n",
|
265 |
+
" return all_data \n",
|
266 |
+
" else: \n",
|
267 |
+
" print(f\"Request failed with status {response.status_code} {response.text}\") \n",
|
268 |
+
" return None "
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": null,
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": []
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": null,
|
281 |
+
"metadata": {},
|
282 |
+
"outputs": [],
|
283 |
+
"source": []
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": null,
|
288 |
+
"metadata": {},
|
289 |
+
"outputs": [],
|
290 |
+
"source": []
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"execution_count": null,
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": []
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "code",
|
301 |
+
"execution_count": null,
|
302 |
+
"metadata": {},
|
303 |
+
"outputs": [],
|
304 |
+
"source": []
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"cell_type": "code",
|
308 |
+
"execution_count": null,
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": []
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "code",
|
315 |
+
"execution_count": null,
|
316 |
+
"metadata": {},
|
317 |
+
"outputs": [],
|
318 |
+
"source": []
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": null,
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": []
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"metadata": {
|
329 |
+
"kernelspec": {
|
330 |
+
"display_name": "venv_GPT4_Disaster",
|
331 |
+
"language": "python",
|
332 |
+
"name": "python3"
|
333 |
+
},
|
334 |
+
"language_info": {
|
335 |
+
"codemirror_mode": {
|
336 |
+
"name": "ipython",
|
337 |
+
"version": 3
|
338 |
+
},
|
339 |
+
"file_extension": ".py",
|
340 |
+
"mimetype": "text/x-python",
|
341 |
+
"name": "python",
|
342 |
+
"nbconvert_exporter": "python",
|
343 |
+
"pygments_lexer": "ipython3",
|
344 |
+
"version": "3.10.12"
|
345 |
+
}
|
346 |
+
},
|
347 |
+
"nbformat": 4,
|
348 |
+
"nbformat_minor": 2
|
349 |
+
}
|