Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import tempfile
|
7 |
+
import subprocess
|
8 |
+
from groq import Groq
|
9 |
+
|
10 |
+
# Groq API Key setup
|
11 |
+
GROQ_API_KEY = "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"
|
12 |
+
client = Groq(api_key=GROQ_API_KEY)
|
13 |
+
|
14 |
+
# Groq Chat Function
|
15 |
+
def chat_with_groq(prompt):
|
16 |
+
try:
|
17 |
+
chat_completion = client.chat.completions.create(
|
18 |
+
messages=[{"role": "user", "content": prompt}],
|
19 |
+
model="gemma-7b-it",
|
20 |
+
stream=False
|
21 |
+
)
|
22 |
+
print(prompt)
|
23 |
+
return chat_completion.choices[0].message.content
|
24 |
+
except Exception as e:
|
25 |
+
return f"Error fetching response: {e}"
|
26 |
+
|
27 |
+
def generate_code_with_groq(prompt):
|
28 |
+
try:
|
29 |
+
chat_completion = client.chat.completions.create(
|
30 |
+
messages=[{"role": "user", "content": prompt}, {"role": "assistant", "content": "```python"}],
|
31 |
+
model="gemma-7b-it",
|
32 |
+
stream=False,
|
33 |
+
stop="```"
|
34 |
+
)
|
35 |
+
return chat_completion.choices[0].message.content
|
36 |
+
except Exception as e:
|
37 |
+
return f"Error fetching response: {e}"
|
38 |
+
|
39 |
+
# File Parsing Functions
|
40 |
+
def parse_file(uploaded_file):
|
41 |
+
filename = uploaded_file.name
|
42 |
+
if filename.endswith('.csv'):
|
43 |
+
return pd.read_csv(uploaded_file)
|
44 |
+
elif filename.endswith('.xlsx'):
|
45 |
+
return pd.read_excel(uploaded_file)
|
46 |
+
else:
|
47 |
+
st.error("Unsupported file type! Only CSV and Excel are supported.")
|
48 |
+
return None
|
49 |
+
|
50 |
+
# Preprocess DataFrame to Fix Type Issues
|
51 |
+
def preprocess_dataframe(df):
|
52 |
+
try:
|
53 |
+
# Convert problematic columns to string to avoid Arrow serialization issues
|
54 |
+
for col in df.columns:
|
55 |
+
if df[col].dtype.name == 'object' or df[col].dtype.name == 'category':
|
56 |
+
df[col] = df[col].astype(str)
|
57 |
+
return df
|
58 |
+
except Exception as e:
|
59 |
+
st.error(f"Error preprocessing data: {e}")
|
60 |
+
return None
|
61 |
+
|
62 |
+
# Analysis Function
|
63 |
+
def analyze_data(data, visualization_type, class_size=10):
|
64 |
+
st.subheader("Basic Analysis")
|
65 |
+
st.write("Shape of Data:", data.shape)
|
66 |
+
st.write("Data Types:")
|
67 |
+
st.write(data.dtypes)
|
68 |
+
|
69 |
+
# Combine numerical and non-numerical summaries
|
70 |
+
st.write("Summary Statistics:")
|
71 |
+
combined_stats = pd.concat(
|
72 |
+
[
|
73 |
+
data.describe(include=[np.number]),
|
74 |
+
data.describe(include=['object', 'category'])
|
75 |
+
],
|
76 |
+
axis=1
|
77 |
+
)
|
78 |
+
st.write(combined_stats)
|
79 |
+
|
80 |
+
numeric_data = data.select_dtypes(include=[np.number])
|
81 |
+
|
82 |
+
# Visualization logic
|
83 |
+
if visualization_type == "Heatmap" and not numeric_data.empty:
|
84 |
+
st.subheader("Correlation Heatmap")
|
85 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
86 |
+
sns.heatmap(numeric_data.corr(), annot=True, ax=ax, cmap="coolwarm", fmt=".2f")
|
87 |
+
st.pyplot(fig)
|
88 |
+
|
89 |
+
elif visualization_type == "Bar Chart" and not numeric_data.empty:
|
90 |
+
st.subheader("Bar Chart")
|
91 |
+
x_col = st.selectbox("Select the X-axis column for the Bar Chart:", data.columns)
|
92 |
+
y_col = st.selectbox("Select the Y-axis column for the Bar Chart:", data.columns)
|
93 |
+
|
94 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
95 |
+
data.groupby(x_col)[y_col].sum().plot(kind='bar', ax=ax)
|
96 |
+
ax.set_xlabel(x_col)
|
97 |
+
ax.set_ylabel(y_col)
|
98 |
+
st.pyplot(fig)
|
99 |
+
|
100 |
+
elif visualization_type == "Line Graph" and not numeric_data.empty:
|
101 |
+
st.subheader("Line Graph")
|
102 |
+
x_col = st.selectbox("Select the X-axis column for the Line Graph:", numeric_data.columns)
|
103 |
+
y_col = st.selectbox("Select the Y-axis column for the Line Graph:", numeric_data.columns)
|
104 |
+
|
105 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
106 |
+
ax.plot(data[x_col], data[y_col])
|
107 |
+
ax.set_xlabel(x_col)
|
108 |
+
ax.set_ylabel(y_col)
|
109 |
+
st.pyplot(fig)
|
110 |
+
|
111 |
+
elif visualization_type == "Scatter Plot" and not numeric_data.empty:
|
112 |
+
st.subheader("Scatter Plot")
|
113 |
+
x_col = st.selectbox("Select the X-axis column for the Scatter Plot:", numeric_data.columns)
|
114 |
+
y_col = st.selectbox("Select the Y-axis column for the Scatter Plot:", numeric_data.columns)
|
115 |
+
|
116 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
117 |
+
ax.scatter(data[x_col], data[y_col])
|
118 |
+
ax.set_xlabel(x_col)
|
119 |
+
ax.set_ylabel(y_col)
|
120 |
+
st.pyplot(fig)
|
121 |
+
|
122 |
+
elif visualization_type == "Histogram" and not numeric_data.empty:
|
123 |
+
st.subheader("Histogram")
|
124 |
+
column = st.selectbox("Select a column for the Histogram:", numeric_data.columns)
|
125 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
126 |
+
data[column].plot(kind='hist', bins=class_size, ax=ax)
|
127 |
+
ax.set_xlabel(column)
|
128 |
+
ax.set_ylabel("Frequency")
|
129 |
+
st.pyplot(fig)
|
130 |
+
|
131 |
+
elif visualization_type == "Area Chart" and not numeric_data.empty:
|
132 |
+
st.subheader("Area Chart")
|
133 |
+
column = st.selectbox("Select a column for the Area Chart:", numeric_data.columns)
|
134 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
135 |
+
data[column].plot(kind='area', ax=ax)
|
136 |
+
ax.set_xlabel(column)
|
137 |
+
ax.set_ylabel("Area")
|
138 |
+
st.pyplot(fig)
|
139 |
+
|
140 |
+
else:
|
141 |
+
st.warning("No valid visualization option selected or data available.")
|
142 |
+
|
143 |
+
# Automatically generate a prompt for Groq based on the analysis
|
144 |
+
prompt = generate_groq_prompt(data, visualization_type, class_size)
|
145 |
+
return prompt
|
146 |
+
|
147 |
+
# Function to generate a prompt based on the data analysis
|
148 |
+
def generate_groq_prompt(data, visualization_type, class_size):
|
149 |
+
# Convert DataFrame to a string without the index
|
150 |
+
data_without_index = data.to_string(index=False)
|
151 |
+
|
152 |
+
prompt = f"""
|
153 |
+
Here is the summary statistics for the dataset:
|
154 |
+
{data_without_index}
|
155 |
+
|
156 |
+
The user has selected the '{visualization_type}' visualization type with a class size of {class_size}.
|
157 |
+
Please generate Python code that does this and for any data, please don't use any file input. Write the data in the code.
|
158 |
+
"""
|
159 |
+
|
160 |
+
return prompt
|
161 |
+
|
162 |
+
# Streamlit App
|
163 |
+
st.title("Data Analysis AI")
|
164 |
+
st.markdown("Upload a file (CSV or Excel) to analyze it.")
|
165 |
+
|
166 |
+
uploaded_file = st.file_uploader("Choose a file", type=['csv', 'xlsx'])
|
167 |
+
|
168 |
+
if uploaded_file is not None:
|
169 |
+
try:
|
170 |
+
data = parse_file(uploaded_file)
|
171 |
+
if data is not None:
|
172 |
+
data = preprocess_dataframe(data) # Fix serialization issues
|
173 |
+
st.subheader("Uploaded Data")
|
174 |
+
st.write(data.head())
|
175 |
+
|
176 |
+
# Visualization Selection
|
177 |
+
visualization_type = st.selectbox(
|
178 |
+
"Select a visualization type:",
|
179 |
+
["Heatmap", "Bar Chart", "Line Graph", "Scatter Plot", "Histogram", "Area Chart"]
|
180 |
+
)
|
181 |
+
|
182 |
+
# User input for class size customization
|
183 |
+
class_size = st.slider("Select the class size for certain plots (e.g., Histogram)", 5, 50, 10)
|
184 |
+
|
185 |
+
# Perform Analysis and Visualization
|
186 |
+
prompt = analyze_data(data, visualization_type, class_size)
|
187 |
+
st.text(f"Prompt sent to Groq:\n{prompt}")
|
188 |
+
|
189 |
+
# Chat with Groq Section
|
190 |
+
st.subheader("Chat with Groq")
|
191 |
+
chat_input = st.text_area("Ask Groq questions about the data:")
|
192 |
+
if st.button("Chat"):
|
193 |
+
if chat_input:
|
194 |
+
chat_response = chat_with_groq(f"Here is the data:\n{data}\n\n{chat_input}")
|
195 |
+
st.write("Groq's Response:")
|
196 |
+
st.write(chat_response)
|
197 |
+
|
198 |
+
# Groq Code Generation Section
|
199 |
+
st.subheader("Generate Python Code with Groq")
|
200 |
+
prompt_input = st.text_area("Describe the analysis or visualization you want to generate code for:")
|
201 |
+
if st.button("Generate Code"):
|
202 |
+
if prompt_input:
|
203 |
+
prompt += f"\n\nUser request: {prompt_input}"
|
204 |
+
response = generate_code_with_groq(prompt)
|
205 |
+
|
206 |
+
# Display the Groq response
|
207 |
+
st.subheader("Generated Code")
|
208 |
+
st.code(response, language="python")
|
209 |
+
except Exception as e:
|
210 |
+
st.error(f"An error occurred: {e}")
|