Spaces:
Runtime error
Runtime error
File size: 12,093 Bytes
b163aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
"""
TTS Model Module
================
Handles model loading, inference optimization, and audio generation.
Implements caching, mixed precision, and efficient batch processing.
"""
import os
import logging
import time
from typing import Dict, List, Tuple, Optional, Union
from pathlib import Path
import torch
import numpy as np
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
# Configure logging
logger = logging.getLogger(__name__)
class OptimizedTTSModel:
"""Optimized TTS model with caching and performance enhancements."""
def __init__(self,
checkpoint: str = "Edmon02/TTS_NB_2",
vocoder_checkpoint: str = "microsoft/speecht5_hifigan",
device: Optional[str] = None,
use_mixed_precision: bool = True,
cache_embeddings: bool = True):
"""
Initialize the optimized TTS model.
Args:
checkpoint: Model checkpoint path
vocoder_checkpoint: Vocoder checkpoint path
device: Device to use ('cuda', 'cpu', or None for auto)
use_mixed_precision: Whether to use mixed precision inference
cache_embeddings: Whether to cache speaker embeddings
"""
self.checkpoint = checkpoint
self.vocoder_checkpoint = vocoder_checkpoint
self.use_mixed_precision = use_mixed_precision
self.cache_embeddings = cache_embeddings
# Auto-detect device
if device is None:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
self.device = torch.device(device)
logger.info(f"Using device: {self.device}")
# Initialize components
self.processor = None
self.model = None
self.vocoder = None
self.speaker_embeddings = {}
self.embedding_cache = {}
# Performance tracking
self.inference_times = []
# Load models
self._load_models()
self._load_speaker_embeddings()
def _load_models(self):
"""Load TTS model, processor, and vocoder."""
try:
logger.info("Loading TTS models...")
start_time = time.time()
# Load processor
self.processor = SpeechT5Processor.from_pretrained(self.checkpoint)
# Load main model
self.model = SpeechT5ForTextToSpeech.from_pretrained(self.checkpoint)
self.model.to(self.device)
self.model.eval() # Set to evaluation mode
# Load vocoder
self.vocoder = SpeechT5HifiGan.from_pretrained(self.vocoder_checkpoint)
self.vocoder.to(self.device)
self.vocoder.eval()
# Enable mixed precision if supported
if self.use_mixed_precision and self.device.type == "cuda":
self.model.half()
self.vocoder.half()
logger.info("Mixed precision enabled")
load_time = time.time() - start_time
logger.info(f"Models loaded in {load_time:.2f}s")
except Exception as e:
logger.error(f"Failed to load models: {e}")
raise
def _load_speaker_embeddings(self):
"""Load speaker embeddings from .npy files."""
try:
# Define available speaker embeddings
embedding_files = {
"BDL": "nb_620.npy",
# Add more speakers as needed
}
base_path = Path(__file__).parent.parent
for speaker, filename in embedding_files.items():
filepath = base_path / filename
if filepath.exists():
embedding = np.load(filepath).astype(np.float32)
self.speaker_embeddings[speaker] = torch.tensor(embedding).to(self.device)
logger.info(f"Loaded embedding for speaker {speaker}")
else:
logger.warning(f"Speaker embedding file not found: {filepath}")
if not self.speaker_embeddings:
raise FileNotFoundError("No speaker embeddings found")
except Exception as e:
logger.error(f"Failed to load speaker embeddings: {e}")
raise
def _get_speaker_embedding(self, speaker: str) -> torch.Tensor:
"""
Get speaker embedding with caching.
Args:
speaker: Speaker identifier
Returns:
Speaker embedding tensor
"""
# Extract speaker code (first 3 characters)
speaker_code = speaker[:3].upper()
if speaker_code not in self.speaker_embeddings:
logger.warning(f"Speaker {speaker_code} not found, using default")
speaker_code = list(self.speaker_embeddings.keys())[0]
# Return cached embedding with batch dimension
embedding = self.speaker_embeddings[speaker_code]
return embedding.unsqueeze(0) # Add batch dimension
def _preprocess_text(self, text: str) -> torch.Tensor:
"""
Preprocess text for model input.
Args:
text: Input text
Returns:
Processed input tensor
"""
if not text.strip():
return None
# Process text
inputs = self.processor(text=text, return_tensors="pt")
input_ids = inputs["input_ids"].to(self.device)
# Limit input length to model's maximum
max_length = getattr(self.model.config, 'max_text_positions', 600)
input_ids = input_ids[..., :max_length]
return input_ids
@torch.no_grad()
def generate_speech(self, text: str, speaker: str = "BDL") -> Tuple[int, np.ndarray]:
"""
Generate speech from text.
Args:
text: Input text
speaker: Speaker identifier
Returns:
Tuple of (sample_rate, audio_array)
"""
start_time = time.time()
try:
# Handle empty text
if not text or not text.strip():
logger.warning("Empty text provided")
return 16000, np.zeros(0, dtype=np.int16)
# Preprocess text
input_ids = self._preprocess_text(text)
if input_ids is None:
return 16000, np.zeros(0, dtype=np.int16)
# Get speaker embedding
speaker_embedding = self._get_speaker_embedding(speaker)
# Generate speech with mixed precision if enabled
if self.use_mixed_precision and self.device.type == "cuda":
with torch.cuda.amp.autocast():
speech = self.model.generate_speech(
input_ids,
speaker_embedding,
vocoder=self.vocoder
)
else:
speech = self.model.generate_speech(
input_ids,
speaker_embedding,
vocoder=self.vocoder
)
# Convert to numpy and scale to int16
speech_np = speech.cpu().numpy()
speech_int16 = (speech_np * 32767).astype(np.int16)
# Track performance
inference_time = time.time() - start_time
self.inference_times.append(inference_time)
logger.info(f"Generated {len(speech_int16)} samples in {inference_time:.3f}s")
return 16000, speech_int16
except Exception as e:
logger.error(f"Speech generation failed: {e}")
return 16000, np.zeros(0, dtype=np.int16)
def generate_speech_chunks(self, text_chunks: List[str], speaker: str = "BDL") -> Tuple[int, np.ndarray]:
"""
Generate speech from multiple text chunks and concatenate.
Args:
text_chunks: List of text chunks
speaker: Speaker identifier
Returns:
Tuple of (sample_rate, concatenated_audio_array)
"""
if not text_chunks:
return 16000, np.zeros(0, dtype=np.int16)
logger.info(f"Generating speech for {len(text_chunks)} chunks")
audio_segments = []
total_start_time = time.time()
for i, chunk in enumerate(text_chunks):
logger.debug(f"Processing chunk {i+1}/{len(text_chunks)}")
sample_rate, audio = self.generate_speech(chunk, speaker)
if len(audio) > 0:
audio_segments.append(audio)
if not audio_segments:
logger.warning("No audio generated from chunks")
return 16000, np.zeros(0, dtype=np.int16)
# Concatenate all audio segments
concatenated_audio = np.concatenate(audio_segments)
total_time = time.time() - total_start_time
logger.info(f"Generated {len(concatenated_audio)} samples from {len(text_chunks)} chunks in {total_time:.3f}s")
return 16000, concatenated_audio
def batch_generate_speech(self, texts: List[str], speaker: str = "BDL") -> List[Tuple[int, np.ndarray]]:
"""
Generate speech for multiple texts (batch processing).
Args:
texts: List of input texts
speaker: Speaker identifier
Returns:
List of (sample_rate, audio_array) tuples
"""
results = []
for text in texts:
result = self.generate_speech(text, speaker)
results.append(result)
return results
def get_performance_stats(self) -> Dict[str, float]:
"""Get performance statistics."""
if not self.inference_times:
return {"avg_inference_time": 0.0, "total_inferences": 0}
return {
"avg_inference_time": np.mean(self.inference_times),
"min_inference_time": np.min(self.inference_times),
"max_inference_time": np.max(self.inference_times),
"total_inferences": len(self.inference_times)
}
def clear_performance_cache(self):
"""Clear performance tracking data."""
self.inference_times.clear()
logger.info("Performance cache cleared")
def get_available_speakers(self) -> List[str]:
"""Get list of available speakers."""
return list(self.speaker_embeddings.keys())
def optimize_for_inference(self):
"""Apply additional optimizations for inference."""
try:
if hasattr(torch.backends, 'cudnn'):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
# Compile model for better performance (PyTorch 2.0+)
if hasattr(torch, 'compile') and self.device.type == "cuda":
logger.info("Compiling model for optimization...")
self.model = torch.compile(self.model)
self.vocoder = torch.compile(self.vocoder)
logger.info("Model optimization completed")
except Exception as e:
logger.warning(f"Model optimization failed: {e}")
def warmup(self, warmup_text: str = "Բարև ձեզ"):
"""
Warm up the model with a simple inference.
Args:
warmup_text: Text to use for warmup
"""
logger.info("Warming up model...")
try:
_ = self.generate_speech(warmup_text)
logger.info("Model warmup completed")
except Exception as e:
logger.warning(f"Model warmup failed: {e}")
|