File size: 12,093 Bytes
b163aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
"""
TTS Model Module
================

Handles model loading, inference optimization, and audio generation.
Implements caching, mixed precision, and efficient batch processing.
"""

import os
import logging
import time
from typing import Dict, List, Tuple, Optional, Union
from pathlib import Path

import torch
import numpy as np
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan

# Configure logging
logger = logging.getLogger(__name__)


class OptimizedTTSModel:
    """Optimized TTS model with caching and performance enhancements."""
    
    def __init__(self, 
                 checkpoint: str = "Edmon02/TTS_NB_2",
                 vocoder_checkpoint: str = "microsoft/speecht5_hifigan",
                 device: Optional[str] = None,
                 use_mixed_precision: bool = True,
                 cache_embeddings: bool = True):
        """
        Initialize the optimized TTS model.
        
        Args:
            checkpoint: Model checkpoint path
            vocoder_checkpoint: Vocoder checkpoint path
            device: Device to use ('cuda', 'cpu', or None for auto)
            use_mixed_precision: Whether to use mixed precision inference
            cache_embeddings: Whether to cache speaker embeddings
        """
        self.checkpoint = checkpoint
        self.vocoder_checkpoint = vocoder_checkpoint
        self.use_mixed_precision = use_mixed_precision
        self.cache_embeddings = cache_embeddings
        
        # Auto-detect device
        if device is None:
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.device = torch.device(device)
        
        logger.info(f"Using device: {self.device}")
        
        # Initialize components
        self.processor = None
        self.model = None
        self.vocoder = None
        self.speaker_embeddings = {}
        self.embedding_cache = {}
        
        # Performance tracking
        self.inference_times = []
        
        # Load models
        self._load_models()
        self._load_speaker_embeddings()
    
    def _load_models(self):
        """Load TTS model, processor, and vocoder."""
        try:
            logger.info("Loading TTS models...")
            start_time = time.time()
            
            # Load processor
            self.processor = SpeechT5Processor.from_pretrained(self.checkpoint)
            
            # Load main model
            self.model = SpeechT5ForTextToSpeech.from_pretrained(self.checkpoint)
            self.model.to(self.device)
            self.model.eval()  # Set to evaluation mode
            
            # Load vocoder
            self.vocoder = SpeechT5HifiGan.from_pretrained(self.vocoder_checkpoint)
            self.vocoder.to(self.device)
            self.vocoder.eval()
            
            # Enable mixed precision if supported
            if self.use_mixed_precision and self.device.type == "cuda":
                self.model.half()
                self.vocoder.half()
                logger.info("Mixed precision enabled")
            
            load_time = time.time() - start_time
            logger.info(f"Models loaded in {load_time:.2f}s")
            
        except Exception as e:
            logger.error(f"Failed to load models: {e}")
            raise
    
    def _load_speaker_embeddings(self):
        """Load speaker embeddings from .npy files."""
        try:
            # Define available speaker embeddings
            embedding_files = {
                "BDL": "nb_620.npy",
                # Add more speakers as needed
            }
            
            base_path = Path(__file__).parent.parent
            
            for speaker, filename in embedding_files.items():
                filepath = base_path / filename
                if filepath.exists():
                    embedding = np.load(filepath).astype(np.float32)
                    self.speaker_embeddings[speaker] = torch.tensor(embedding).to(self.device)
                    logger.info(f"Loaded embedding for speaker {speaker}")
                else:
                    logger.warning(f"Speaker embedding file not found: {filepath}")
            
            if not self.speaker_embeddings:
                raise FileNotFoundError("No speaker embeddings found")
                
        except Exception as e:
            logger.error(f"Failed to load speaker embeddings: {e}")
            raise
    
    def _get_speaker_embedding(self, speaker: str) -> torch.Tensor:
        """
        Get speaker embedding with caching.
        
        Args:
            speaker: Speaker identifier
            
        Returns:
            Speaker embedding tensor
        """
        # Extract speaker code (first 3 characters)
        speaker_code = speaker[:3].upper()
        
        if speaker_code not in self.speaker_embeddings:
            logger.warning(f"Speaker {speaker_code} not found, using default")
            speaker_code = list(self.speaker_embeddings.keys())[0]
        
        # Return cached embedding with batch dimension
        embedding = self.speaker_embeddings[speaker_code]
        return embedding.unsqueeze(0)  # Add batch dimension
    
    def _preprocess_text(self, text: str) -> torch.Tensor:
        """
        Preprocess text for model input.
        
        Args:
            text: Input text
            
        Returns:
            Processed input tensor
        """
        if not text.strip():
            return None
        
        # Process text
        inputs = self.processor(text=text, return_tensors="pt")
        input_ids = inputs["input_ids"].to(self.device)
        
        # Limit input length to model's maximum
        max_length = getattr(self.model.config, 'max_text_positions', 600)
        input_ids = input_ids[..., :max_length]
        
        return input_ids
    
    @torch.no_grad()
    def generate_speech(self, text: str, speaker: str = "BDL") -> Tuple[int, np.ndarray]:
        """
        Generate speech from text.
        
        Args:
            text: Input text
            speaker: Speaker identifier
            
        Returns:
            Tuple of (sample_rate, audio_array)
        """
        start_time = time.time()
        
        try:
            # Handle empty text
            if not text or not text.strip():
                logger.warning("Empty text provided")
                return 16000, np.zeros(0, dtype=np.int16)
            
            # Preprocess text
            input_ids = self._preprocess_text(text)
            if input_ids is None:
                return 16000, np.zeros(0, dtype=np.int16)
            
            # Get speaker embedding
            speaker_embedding = self._get_speaker_embedding(speaker)
            
            # Generate speech with mixed precision if enabled
            if self.use_mixed_precision and self.device.type == "cuda":
                with torch.cuda.amp.autocast():
                    speech = self.model.generate_speech(
                        input_ids, 
                        speaker_embedding, 
                        vocoder=self.vocoder
                    )
            else:
                speech = self.model.generate_speech(
                    input_ids, 
                    speaker_embedding, 
                    vocoder=self.vocoder
                )
            
            # Convert to numpy and scale to int16
            speech_np = speech.cpu().numpy()
            speech_int16 = (speech_np * 32767).astype(np.int16)
            
            # Track performance
            inference_time = time.time() - start_time
            self.inference_times.append(inference_time)
            
            logger.info(f"Generated {len(speech_int16)} samples in {inference_time:.3f}s")
            
            return 16000, speech_int16
            
        except Exception as e:
            logger.error(f"Speech generation failed: {e}")
            return 16000, np.zeros(0, dtype=np.int16)
    
    def generate_speech_chunks(self, text_chunks: List[str], speaker: str = "BDL") -> Tuple[int, np.ndarray]:
        """
        Generate speech from multiple text chunks and concatenate.
        
        Args:
            text_chunks: List of text chunks
            speaker: Speaker identifier
            
        Returns:
            Tuple of (sample_rate, concatenated_audio_array)
        """
        if not text_chunks:
            return 16000, np.zeros(0, dtype=np.int16)
        
        logger.info(f"Generating speech for {len(text_chunks)} chunks")
        
        audio_segments = []
        total_start_time = time.time()
        
        for i, chunk in enumerate(text_chunks):
            logger.debug(f"Processing chunk {i+1}/{len(text_chunks)}")
            sample_rate, audio = self.generate_speech(chunk, speaker)
            
            if len(audio) > 0:
                audio_segments.append(audio)
        
        if not audio_segments:
            logger.warning("No audio generated from chunks")
            return 16000, np.zeros(0, dtype=np.int16)
        
        # Concatenate all audio segments
        concatenated_audio = np.concatenate(audio_segments)
        
        total_time = time.time() - total_start_time
        logger.info(f"Generated {len(concatenated_audio)} samples from {len(text_chunks)} chunks in {total_time:.3f}s")
        
        return 16000, concatenated_audio
    
    def batch_generate_speech(self, texts: List[str], speaker: str = "BDL") -> List[Tuple[int, np.ndarray]]:
        """
        Generate speech for multiple texts (batch processing).
        
        Args:
            texts: List of input texts
            speaker: Speaker identifier
            
        Returns:
            List of (sample_rate, audio_array) tuples
        """
        results = []
        
        for text in texts:
            result = self.generate_speech(text, speaker)
            results.append(result)
        
        return results
    
    def get_performance_stats(self) -> Dict[str, float]:
        """Get performance statistics."""
        if not self.inference_times:
            return {"avg_inference_time": 0.0, "total_inferences": 0}
        
        return {
            "avg_inference_time": np.mean(self.inference_times),
            "min_inference_time": np.min(self.inference_times),
            "max_inference_time": np.max(self.inference_times),
            "total_inferences": len(self.inference_times)
        }
    
    def clear_performance_cache(self):
        """Clear performance tracking data."""
        self.inference_times.clear()
        logger.info("Performance cache cleared")
    
    def get_available_speakers(self) -> List[str]:
        """Get list of available speakers."""
        return list(self.speaker_embeddings.keys())
    
    def optimize_for_inference(self):
        """Apply additional optimizations for inference."""
        try:
            if hasattr(torch.backends, 'cudnn'):
                torch.backends.cudnn.benchmark = True
                torch.backends.cudnn.deterministic = False
            
            # Compile model for better performance (PyTorch 2.0+)
            if hasattr(torch, 'compile') and self.device.type == "cuda":
                logger.info("Compiling model for optimization...")
                self.model = torch.compile(self.model)
                self.vocoder = torch.compile(self.vocoder)
            
            logger.info("Model optimization completed")
            
        except Exception as e:
            logger.warning(f"Model optimization failed: {e}")
    
    def warmup(self, warmup_text: str = "Բարև ձեզ"):
        """
        Warm up the model with a simple inference.
        
        Args:
            warmup_text: Text to use for warmup
        """
        logger.info("Warming up model...")
        try:
            _ = self.generate_speech(warmup_text)
            logger.info("Model warmup completed")
        except Exception as e:
            logger.warning(f"Model warmup failed: {e}")