Spaces:
Runtime error
Runtime error
File size: 12,988 Bytes
b163aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
"""
Unit Tests for TTS Pipeline Components
======================================
Comprehensive test suite for the optimized TTS system.
"""
import unittest
import numpy as np
import tempfile
import os
import sys
from unittest.mock import Mock, patch, MagicMock
# Add src to path
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'src'))
from src.preprocessing import TextProcessor
from src.audio_processing import AudioProcessor
class TestTextProcessor(unittest.TestCase):
"""Test cases for text preprocessing functionality."""
def setUp(self):
"""Set up test fixtures."""
self.processor = TextProcessor(max_chunk_length=100, overlap_words=3)
def test_empty_text_processing(self):
"""Test handling of empty text."""
result = self.processor.process_text("")
self.assertEqual(result, "")
result = self.processor.process_text(None)
self.assertEqual(result, "")
def test_number_conversion_cache(self):
"""Test number conversion with caching."""
# First call should populate cache
result1 = self.processor._convert_number_to_armenian_words(42)
# Second call should use cache
result2 = self.processor._convert_number_to_armenian_words(42)
self.assertEqual(result1, result2)
self.assertIn("42", self.processor.number_cache)
def test_text_chunking_short_text(self):
"""Test chunking behavior with short text."""
short_text = "Կարճ տեքստ:"
chunks = self.processor.chunk_text(short_text)
self.assertEqual(len(chunks), 1)
self.assertEqual(chunks[0], short_text)
def test_text_chunking_long_text(self):
"""Test chunking behavior with long text."""
long_text = "Այս շատ երկար տեքստ է, որը պետք է բաժանվի մի քանի մասի: " * 5
chunks = self.processor.chunk_text(long_text)
self.assertGreater(len(chunks), 1)
# Check that each chunk is within limits
for chunk in chunks:
self.assertLessEqual(len(chunk), self.processor.max_chunk_length + 50) # Some tolerance
def test_sentence_splitting(self):
"""Test sentence splitting functionality."""
text = "Առաջին նախադասություն: Երկրորդ նախադասություն! Երրորդ նախադասություն?"
sentences = self.processor._split_into_sentences(text)
self.assertEqual(len(sentences), 3)
self.assertIn("Առաջին նախադասություն", sentences[0])
def test_overlap_addition(self):
"""Test overlap addition between chunks."""
chunks = ["Առաջին մաս շատ կարևոր է", "Երկրորդ մասը նույնպես կարևոր"]
overlapped = self.processor._add_overlap(chunks)
self.assertEqual(len(overlapped), 2)
# Second chunk should contain words from first
self.assertIn("կարևոր", overlapped[1])
def test_cache_clearing(self):
"""Test cache clearing functionality."""
# Add some data to caches
self.processor.number_cache["test"] = "test_value"
self.processor._cached_translate("test")
# Clear caches
self.processor.clear_cache()
self.assertEqual(len(self.processor.number_cache), 0)
def test_cache_stats(self):
"""Test cache statistics functionality."""
stats = self.processor.get_cache_stats()
self.assertIn("translation_cache_size", stats)
self.assertIn("number_cache_size", stats)
self.assertIn("lru_cache_hits", stats)
self.assertIn("lru_cache_misses", stats)
class TestAudioProcessor(unittest.TestCase):
"""Test cases for audio processing functionality."""
def setUp(self):
"""Set up test fixtures."""
self.processor = AudioProcessor(
crossfade_duration=0.1,
sample_rate=16000,
apply_noise_gate=True,
normalize_audio=True
)
def test_empty_audio_processing(self):
"""Test handling of empty audio."""
empty_audio = np.array([], dtype=np.int16)
result = self.processor.process_audio(empty_audio)
self.assertEqual(len(result), 0)
self.assertEqual(result.dtype, np.int16)
def test_audio_normalization(self):
"""Test audio normalization."""
# Create test audio with known peak
test_audio = np.array([1000, -2000, 3000, -1500], dtype=np.int16)
normalized = self.processor._normalize_audio(test_audio)
# Peak should be close to target
peak = np.max(np.abs(normalized))
expected_peak = 0.95 * 32767
self.assertAlmostEqual(peak, expected_peak, delta=100)
def test_crossfade_window_creation(self):
"""Test crossfade window creation."""
length = 100
fade_out, fade_in = self.processor._create_crossfade_window(length)
self.assertEqual(len(fade_out), length)
self.assertEqual(len(fade_in), length)
# Windows should sum to approximately 1
window_sum = fade_out + fade_in
np.testing.assert_allclose(window_sum, 1.0, atol=0.01)
def test_single_segment_crossfade(self):
"""Test crossfading with single audio segment."""
audio = np.random.randint(-1000, 1000, 1000, dtype=np.int16)
result = self.processor.crossfade_audio_segments([audio])
np.testing.assert_array_equal(result, audio)
def test_multiple_segment_crossfade(self):
"""Test crossfading with multiple audio segments."""
segment1 = np.random.randint(-1000, 1000, 1000, dtype=np.int16)
segment2 = np.random.randint(-1000, 1000, 1000, dtype=np.int16)
result = self.processor.crossfade_audio_segments([segment1, segment2])
# Result should be longer than either segment but shorter than sum
self.assertGreater(len(result), len(segment1))
self.assertLess(len(result), len(segment1) + len(segment2))
def test_silence_addition(self):
"""Test silence padding."""
audio = np.random.randint(-1000, 1000, 1000, dtype=np.int16)
padded = self.processor.add_silence(audio, start_silence=0.1, end_silence=0.1)
expected_padding = int(0.1 * self.processor.sample_rate)
expected_length = len(audio) + 2 * expected_padding
self.assertEqual(len(padded), expected_length)
# Start and end should be silent
self.assertTrue(np.all(padded[:expected_padding] == 0))
self.assertTrue(np.all(padded[-expected_padding:] == 0))
def test_audio_stats(self):
"""Test audio statistics calculation."""
# Create test audio
audio = np.random.randint(-10000, 10000, 16000, dtype=np.int16) # 1 second
stats = self.processor.get_audio_stats(audio)
self.assertAlmostEqual(stats["duration_seconds"], 1.0, places=2)
self.assertEqual(stats["sample_count"], 16000)
self.assertIn("peak_amplitude", stats)
self.assertIn("rms_level", stats)
self.assertIn("dynamic_range_db", stats)
def test_empty_audio_stats(self):
"""Test statistics for empty audio."""
empty_audio = np.array([], dtype=np.int16)
stats = self.processor.get_audio_stats(empty_audio)
self.assertIn("error", stats)
def test_process_and_concatenate(self):
"""Test full processing and concatenation pipeline."""
segments = [
np.random.randint(-1000, 1000, 500, dtype=np.int16),
np.random.randint(-1000, 1000, 600, dtype=np.int16),
np.random.randint(-1000, 1000, 700, dtype=np.int16)
]
result = self.processor.process_and_concatenate(segments)
self.assertGreater(len(result), 0)
self.assertEqual(result.dtype, np.int16)
class TestModelIntegration(unittest.TestCase):
"""Integration tests for model components."""
def setUp(self):
"""Set up mock components for testing."""
self.mock_processor = Mock()
self.mock_model = Mock()
self.mock_vocoder = Mock()
@patch('src.model.SpeechT5Processor')
@patch('src.model.SpeechT5ForTextToSpeech')
@patch('src.model.SpeechT5HifiGan')
@patch('src.model.torch')
@patch('src.model.np')
def test_model_initialization_mocked(self, mock_np, mock_torch,
mock_vocoder_class, mock_model_class,
mock_processor_class):
"""Test model initialization with mocked dependencies."""
# Configure mocks
mock_torch.cuda.is_available.return_value = False
mock_torch.device.return_value = Mock()
mock_processor_instance = Mock()
mock_processor_class.from_pretrained.return_value = mock_processor_instance
mock_model_instance = Mock()
mock_model_class.from_pretrained.return_value = mock_model_instance
mock_vocoder_instance = Mock()
mock_vocoder_class.from_pretrained.return_value = mock_vocoder_instance
# Create temporary numpy file
with tempfile.NamedTemporaryFile(suffix='.npy', delete=False) as tmp:
test_embedding = np.random.rand(512).astype(np.float32)
np.save(tmp.name, test_embedding)
tmp_path = tmp.name
try:
# This would normally import and test OptimizedTTSModel
# But since we're testing in isolation, we'll verify the mocks were called
mock_processor_class.from_pretrained.assert_called_once()
mock_model_class.from_pretrained.assert_called_once()
mock_vocoder_class.from_pretrained.assert_called_once()
finally:
# Clean up temporary file
if os.path.exists(tmp_path):
os.unlink(tmp_path)
class TestPipelineIntegration(unittest.TestCase):
"""Integration tests for the complete pipeline."""
def test_empty_text_handling(self):
"""Test pipeline handling of empty text."""
# This would test the actual pipeline with mocked components
# For now, we test the concept
text = ""
expected_output = (16000, np.zeros(0, dtype=np.int16))
# Mock pipeline behavior
if not text.strip():
result = expected_output
self.assertEqual(result[0], 16000)
self.assertEqual(len(result[1]), 0)
def test_chunking_decision_logic(self):
"""Test the logic for deciding when to use chunking."""
max_chunk_length = 200
short_text = "Կարճ տեքստ"
long_text = "a" * 300 # Longer than max_chunk_length
should_chunk_short = len(short_text) > max_chunk_length
should_chunk_long = len(long_text) > max_chunk_length
self.assertFalse(should_chunk_short)
self.assertTrue(should_chunk_long)
def run_performance_benchmark():
"""Run basic performance benchmarks."""
print("\n" + "="*50)
print("PERFORMANCE BENCHMARK")
print("="*50)
# Text processing benchmark
processor = TextProcessor()
test_texts = [
"Կարճ տեքստ",
"Միջին երկարության տեքստ, որը պարունակում է մի քանի բառ և թվեր 123:",
"Շատ երկար տեքստ, որը կրկնվում է " * 20
]
for i, text in enumerate(test_texts):
import time
start = time.time()
processed = processor.process_text(text)
chunks = processor.chunk_text(processed)
end = time.time()
print(f"Text {i+1}: {len(text)} chars → {len(chunks)} chunks in {end-start:.4f}s")
# Audio processing benchmark
audio_processor = AudioProcessor()
test_segments = [
np.random.randint(-10000, 10000, 16000, dtype=np.int16), # 1 second
np.random.randint(-10000, 10000, 32000, dtype=np.int16), # 2 seconds
np.random.randint(-10000, 10000, 80000, dtype=np.int16), # 5 seconds
]
for i, segment in enumerate(test_segments):
import time
start = time.time()
processed = audio_processor.process_audio(segment)
end = time.time()
duration = len(segment) / 16000
print(f"Audio {i+1}: {duration:.1f}s processed in {end-start:.4f}s")
if __name__ == "__main__":
# Run unit tests
print("Running Unit Tests...")
unittest.main(argv=[''], exit=False, verbosity=2)
# Run performance benchmark
run_performance_benchmark()
|