|
import librosa |
|
from transformers import Wav2Vec2ForCTC, AutoProcessor |
|
import torch |
|
import numpy as np |
|
from pathlib import Path |
|
import concurrent.futures |
|
|
|
ASR_SAMPLING_RATE = 16_000 |
|
CHUNK_LENGTH_S = 60 |
|
MAX_CONCURRENT_CHUNKS = 4 |
|
|
|
MODEL_ID = "facebook/mms-1b-all" |
|
|
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
|
|
def load_audio(audio_data): |
|
if isinstance(audio_data, tuple): |
|
sr, audio_samples = audio_data |
|
audio_samples = (audio_samples / 32768.0).astype(np.float32) |
|
if sr != ASR_SAMPLING_RATE: |
|
audio_samples = librosa.resample( |
|
audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE |
|
) |
|
elif isinstance(audio_data, np.ndarray): |
|
audio_samples = audio_data |
|
elif isinstance(audio_data, str): |
|
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0] |
|
else: |
|
raise ValueError(f"Invalid Audio Input Instance: {type(audio_data)}") |
|
return audio_samples |
|
|
|
def process_chunk(chunk, device): |
|
inputs = processor(chunk, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model(**inputs).logits |
|
ids = torch.argmax(outputs, dim=-1)[0] |
|
return processor.decode(ids) |
|
|
|
def transcribe(audio_data=None, lang="eng (English)"): |
|
if audio_data is None or (isinstance(audio_data, np.ndarray) and audio_data.size == 0): |
|
return "<<ERROR: Empty Audio Input>>" |
|
|
|
try: |
|
audio_samples = load_audio(audio_data) |
|
except Exception as e: |
|
return f"<<ERROR: {str(e)}>>" |
|
|
|
lang_code = lang.split()[0] |
|
processor.tokenizer.set_target_lang(lang_code) |
|
model.load_adapter(lang_code) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
chunk_length = int(CHUNK_LENGTH_S * ASR_SAMPLING_RATE) |
|
chunks = [audio_samples[i:i+chunk_length] for i in range(0, len(audio_samples), chunk_length)] |
|
|
|
transcriptions = [] |
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_CONCURRENT_CHUNKS) as executor: |
|
future_to_chunk = {executor.submit(process_chunk, chunk, device): chunk for chunk in chunks} |
|
for future in concurrent.futures.as_completed(future_to_chunk): |
|
transcriptions.append(future.result()) |
|
|
|
return " ".join(transcriptions) |
|
|
|
|
|
ASR_EXAMPLES = [ |
|
["upload/english.mp3", "eng (English)"], |
|
|
|
|
|
] |
|
|