File size: 14,979 Bytes
9575eea
 
 
bc747e6
09ab406
 
 
 
06e4c74
3cf82c2
 
 
 
1388ad6
73af305
5d16050
 
bc747e6
 
 
73af305
3cf82c2
 
09ab406
 
 
0eaed7a
00f260b
4d56027
 
 
09ab406
5d16050
 
 
 
 
 
 
09ab406
 
bc747e6
f84bdcd
 
bc747e6
 
 
9575eea
 
 
 
bc747e6
 
 
 
 
 
 
 
3cf82c2
 
0ec2266
3cf82c2
 
09ab406
 
 
 
 
9575eea
 
 
 
 
73af305
 
 
 
 
 
 
 
1388ad6
73af305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec2266
09ab406
9575eea
521a4ba
4d56027
0ec2266
73af305
0ec2266
aa3c419
 
0ec2266
aa3c419
 
 
0ec2266
4d56027
521a4ba
 
4d56027
5d16050
 
 
 
 
521a4ba
5d16050
 
521a4ba
5d16050
09ab406
9575eea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09ab406
9575eea
521a4ba
be921fa
4d56027
1771b70
 
 
be921fa
 
 
1771b70
be921fa
 
 
5d16050
1771b70
0eaed7a
5d16050
 
 
 
 
0eaed7a
 
be921fa
5d16050
 
0eaed7a
5d16050
0eaed7a
5d16050
 
 
 
be921fa
 
5d16050
0eaed7a
5d16050
0eaed7a
5d16050
0eaed7a
5d16050
4d56027
0eaed7a
4d56027
5d16050
0eaed7a
bc747e6
 
 
a921671
bc747e6
efc7284
 
 
 
a921671
efc7284
bc747e6
 
311f9e9
 
efc7284
bc747e6
521a4ba
 
5d16050
bc747e6
efc7284
 
 
 
 
be921fa
 
 
521a4ba
be921fa
 
521a4ba
be921fa
4d56027
be921fa
5d16050
 
be921fa
5d16050
 
521a4ba
5d16050
 
521a4ba
5d16050
be921fa
fc0645c
7bcf8d7
09ab406
9575eea
521a4ba
4d56027
0ec2266
73af305
4d56027
521a4ba
 
4d56027
5d16050
 
 
 
 
521a4ba
5d16050
 
521a4ba
5d16050
09ab406
9575eea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09ab406
9575eea
521a4ba
4d56027
521a4ba
 
4d56027
5d16050
 
 
 
 
521a4ba
5d16050
 
521a4ba
5d16050
09ab406
 
9575eea
521a4ba
4d56027
521a4ba
 
4d56027
5d16050
 
 
 
 
521a4ba
5d16050
 
521a4ba
5d16050
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
from fastapi import FastAPI, HTTPException, File, UploadFile, Depends, Security
from fastapi.security.api_key import APIKeyHeader, APIKey
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import numpy as np
import io
import soundfile as sf
import base64
import logging
import torch
import librosa
from pathlib import Path
from pydub import AudioSegment
from moviepy.editor import VideoFileClip
import traceback
from logging.handlers import RotatingFileHandler
import boto3
from botocore.exceptions import NoCredentialsError
import time
import tempfile

# Import functions from other modules
from asr import transcribe, ASR_LANGUAGES
from tts import synthesize, TTS_LANGUAGES
from lid import identify
from asr import ASR_SAMPLING_RATE

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Add a file handler
file_handler = RotatingFileHandler('app.log', maxBytes=10000000, backupCount=5)
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)

app = FastAPI(title="MMS: Scaling Speech Technology to 1000+ languages")

# S3 Configuration
S3_BUCKET = os.environ.get("S3_BUCKET")
S3_REGION = os.environ.get("S3_REGION")
S3_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID")
S3_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY")

# API Key Configuration
API_KEY = os.environ.get("API_KEY")
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)

# Initialize S3 client
s3_client = boto3.client(
    's3',
    aws_access_key_id=S3_ACCESS_KEY_ID,
    aws_secret_access_key=S3_SECRET_ACCESS_KEY,
    region_name=S3_REGION
)

# Define request models
class AudioRequest(BaseModel):
    audio: str  # Base64 encoded audio or video data
    language: str

class TTSRequest(BaseModel):
    text: str
    language: str
    speed: float

async def get_api_key(api_key_header: str = Security(api_key_header)):
    if api_key_header == API_KEY:
        return api_key_header
    raise HTTPException(status_code=403, detail="Could not validate credentials")

def extract_audio_from_file(input_bytes):
    with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as temp_file:
        temp_file.write(input_bytes)
        temp_file_path = temp_file.name

    try:
        # First, try to read as a standard audio file
        audio_array, sample_rate = sf.read(temp_file_path)
        return audio_array, sample_rate
    except Exception:
        try:
            # Try to read as a video file
            video = VideoFileClip(temp_file_path)
            audio = video.audio
            if audio is not None:
                # Extract audio from video
                audio_array = audio.to_soundarray()
                sample_rate = audio.fps
                
                # Convert to mono if stereo
                if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
                    audio_array = audio_array.mean(axis=1)
                
                # Ensure audio is float32 and normalized
                audio_array = audio_array.astype(np.float32)
                audio_array /= np.max(np.abs(audio_array))
                
                video.close()
                return audio_array, sample_rate
            else:
                raise ValueError("Video file contains no audio")
        except Exception:
            # If video reading fails, try as generic audio with pydub
            try:
                audio = AudioSegment.from_file(temp_file_path)
                audio_array = np.array(audio.get_array_of_samples())
                
                # Convert to float32 and normalize
                audio_array = audio_array.astype(np.float32) / (2**15 if audio.sample_width == 2 else 2**7)
                
                # Convert stereo to mono if necessary
                if audio.channels == 2:
                    audio_array = audio_array.reshape((-1, 2)).mean(axis=1)
                
                return audio_array, audio.frame_rate
            except Exception as e:
                raise ValueError(f"Unsupported file format: {str(e)}")
    finally:
        # Clean up the temporary file
        os.unlink(temp_file_path)

@app.post("/transcribe")
async def transcribe_audio(request: AudioRequest, api_key: APIKey = Depends(get_api_key)):
    start_time = time.time()
    try:
        input_bytes = base64.b64decode(request.audio)
        audio_array, sample_rate = extract_audio_from_file(input_bytes)

        # Ensure audio_array is float32
        audio_array = audio_array.astype(np.float32)

        # Resample if necessary
        if sample_rate != ASR_SAMPLING_RATE:
            audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=ASR_SAMPLING_RATE)

        result = transcribe(audio_array, request.language)
        processing_time = time.time() - start_time
        return JSONResponse(content={"transcription": result, "processing_time_seconds": processing_time})
    except Exception as e:
        logger.error(f"Error in transcribe_audio: {str(e)}", exc_info=True)
        error_details = {
            "error": str(e),
            "traceback": traceback.format_exc()
        }
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=500,
            content={"message": "An error occurred during transcription", "details": error_details, "processing_time_seconds": processing_time}
        )

@app.post("/transcribe_file")
async def transcribe_audio_file(file: UploadFile = File(...), language: str = "", api_key: APIKey = Depends(get_api_key)):
    start_time = time.time()
    try:
        contents = await file.read()
        audio_array, sample_rate = extract_audio_from_file(contents)

        # Ensure audio_array is float32
        audio_array = audio_array.astype(np.float32)

        # Resample if necessary
        if sample_rate != ASR_SAMPLING_RATE:
            audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=ASR_SAMPLING_RATE)

        result = transcribe(audio_array, language)
        processing_time = time.time() - start_time
        return JSONResponse(content={"transcription": result, "processing_time_seconds": processing_time})
    except Exception as e:
        logger.error(f"Error in transcribe_audio_file: {str(e)}", exc_info=True)
        error_details = {
            "error": str(e),
            "traceback": traceback.format_exc()
        }
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=500,
            content={"message": "An error occurred during transcription", "details": error_details, "processing_time_seconds": processing_time}
        )

@app.post("/synthesize")
async def synthesize_speech(request: TTSRequest, api_key: APIKey = Depends(get_api_key)):
    start_time = time.time()
    logger.info(f"Synthesize request received: text='{request.text}', language='{request.language}', speed={request.speed}")
    try:
        # Extract the ISO code from the full language name
        lang_code = request.language.split()[0].strip()
        
        # Input validation
        if not request.text:
            raise ValueError("Text cannot be empty")
        if lang_code not in TTS_LANGUAGES:
            raise ValueError(f"Unsupported language: {request.language}")
        if not 0.5 <= request.speed <= 2.0:
            raise ValueError(f"Speed must be between 0.5 and 2.0, got {request.speed}")
        
        logger.info(f"Calling synthesize function with lang_code: {lang_code}")
        result, filtered_text = synthesize(request.text, request.language, request.speed)
        logger.info(f"Synthesize function completed. Filtered text: '{filtered_text}'")
        
        if result is None:
            logger.error("Synthesize function returned None")
            raise ValueError("Synthesis failed to produce audio")
        
        sample_rate, audio = result
        logger.info(f"Synthesis result: sample_rate={sample_rate}, audio_shape={audio.shape if isinstance(audio, np.ndarray) else 'not numpy array'}, audio_dtype={audio.dtype if isinstance(audio, np.ndarray) else type(audio)}")
        
        logger.info("Converting audio to numpy array")
        audio = np.array(audio, dtype=np.float32)
        logger.info(f"Converted audio shape: {audio.shape}, dtype: {audio.dtype}")
        
        logger.info("Normalizing audio")
        max_value = np.max(np.abs(audio))
        if max_value == 0:
            logger.warning("Audio array is all zeros")
            raise ValueError("Generated audio is silent (all zeros)")
        audio = audio / max_value
        logger.info(f"Normalized audio range: [{audio.min()}, {audio.max()}]")
        
        logger.info("Converting to int16")
        audio = (audio * 32767).astype(np.int16)
        logger.info(f"Int16 audio shape: {audio.shape}, dtype: {audio.dtype}")
        
        logger.info("Writing audio to buffer")
        buffer = io.BytesIO()
        sf.write(buffer, audio, sample_rate, format='wav')
        buffer.seek(0)
        logger.info(f"Buffer size: {buffer.getbuffer().nbytes} bytes")
        
        # Generate a unique filename
        filename = f"synthesized_audio_{int(time.time())}.wav"
        
        # Upload to S3 without ACL
        try:
            s3_client.upload_fileobj(
                buffer, 
                S3_BUCKET, 
                filename, 
                ExtraArgs={'ContentType': 'audio/wav'}
            )
            logger.info(f"File uploaded successfully to S3: {filename}")
            
            # Generate the public URL with the correct format
            url = f"https://s3.{S3_REGION}.amazonaws.com/{S3_BUCKET}/{filename}"
            logger.info(f"Public URL generated: {url}")
            
            processing_time = time.time() - start_time
            return JSONResponse(content={"audio_url": url, "processing_time_seconds": processing_time})
        
        except NoCredentialsError:
            logger.error("AWS credentials not available or invalid")
            raise HTTPException(status_code=500, detail="Could not upload file to S3: Missing or invalid credentials")
        except Exception as e:
            logger.error(f"Failed to upload to S3: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Could not upload file to S3: {str(e)}")

    except ValueError as ve:
        logger.error(f"ValueError in synthesize_speech: {str(ve)}", exc_info=True)
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=400,
            content={"message": "Invalid input", "details": str(ve), "processing_time_seconds": processing_time}
        )
    except Exception as e:
        logger.error(f"Unexpected error in synthesize_speech: {str(e)}", exc_info=True)
        error_details = {
            "error": str(e),
            "type": type(e).__name__,
            "traceback": traceback.format_exc()
        }
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=500,
            content={"message": "An unexpected error occurred during speech synthesis", "details": error_details, "processing_time_seconds": processing_time}
        )
    finally:
        logger.info("Synthesize request completed")

@app.post("/identify")
async def identify_language(request: AudioRequest, api_key: APIKey = Depends(get_api_key)):
    start_time = time.time()
    try:
        input_bytes = base64.b64decode(request.audio)
        audio_array, sample_rate = extract_audio_from_file(input_bytes)
        result = identify(audio_array)
        processing_time = time.time() - start_time
        return JSONResponse(content={"language_identification": result, "processing_time_seconds": processing_time})
    except Exception as e:
        logger.error(f"Error in identify_language: {str(e)}", exc_info=True)
        error_details = {
            "error": str(e),
            "traceback": traceback.format_exc()
        }
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=500,
            content={"message": "An error occurred during language identification", "details": error_details, "processing_time_seconds": processing_time}
        )

@app.post("/identify_file")
async def identify_language_file(file: UploadFile = File(...), api_key: APIKey = Depends(get_api_key)):
    start_time = time.time()
    try:
        contents = await file.read()
        audio_array, sample_rate = extract_audio_from_file(contents)
        result = identify(audio_array)
        processing_time = time.time() - start_time
        return JSONResponse(content={"language_identification": result, "processing_time_seconds": processing_time})
    except Exception as e:
        logger.error(f"Error in identify_language_file: {str(e)}", exc_info=True)
        error_details = {
            "error": str(e),
            "traceback": traceback.format_exc()
        }
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=500,
            content={"message": "An error occurred during language identification", "details": error_details, "processing_time_seconds": processing_time}
        )

@app.get("/asr_languages")
async def get_asr_languages(api_key: APIKey = Depends(get_api_key)):
    start_time = time.time()
    try:
        processing_time = time.time() - start_time
        return JSONResponse(content={"languages": ASR_LANGUAGES, "processing_time_seconds": processing_time})
    except Exception as e:
        logger.error(f"Error in get_asr_languages: {str(e)}", exc_info=True)
        error_details = {
            "error": str(e),
            "traceback": traceback.format_exc()
        }
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=500,
            content={"message": "An error occurred while fetching ASR languages", "details": error_details, "processing_time_seconds": processing_time}
        )

@app.get("/tts_languages")
async def get_tts_languages(api_key: APIKey = Depends(get_api_key)):
    start_time = time.time()
    try:
        processing_time = time.time() - start_time
        return JSONResponse(content={"languages": TTS_LANGUAGES, "processing_time_seconds": processing_time})
    except Exception as e:
        logger.error(f"Error in get_tts_languages: {str(e)}", exc_info=True)
        error_details = {
            "error": str(e),
            "traceback": traceback.format_exc()
        }
        processing_time = time.time() - start_time
        return JSONResponse(
            status_code=500,
            content={"message": "An error occurred while fetching TTS languages", "details": error_details, "processing_time_seconds": processing_time}
        )