import logging import math import time import base64 import os from typing import Dict, Any from functools import wraps from fastapi import FastAPI, Depends, HTTPException, File, UploadFile, Form, Header from fastapi.encoders import jsonable_encoder from pydantic import BaseModel import jax.numpy as jnp import numpy as np from transformers.pipelines.audio_utils import ffmpeg_read from whisper_jax import FlaxWhisperPipline app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️") logger = logging.getLogger("whisper-jax-app") logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") ch.setFormatter(formatter) logger.addHandler(ch) checkpoint = "openai/whisper-large-v3" BATCH_SIZE = 32 CHUNK_LENGTH_S = 30 NUM_PROC = 32 FILE_LIMIT_MB = 10000 pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) stride_length_s = CHUNK_LENGTH_S / 6 chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) step = chunk_len - stride_left - stride_right # Pre-compile step logger.debug("Compiling forward call...") start = time.time() random_inputs = { "input_features": np.ones( (BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) ) } random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) compile_time = time.time() - start logger.debug(f"Compiled in {compile_time}s") class TranscribeAudioRequest(BaseModel): audio_base64: str task: str = "transcribe" return_timestamps: bool = False def timeit(func): @wraps(func) async def wrapper(*args, **kwargs): start_time = time.time() result = await func(*args, **kwargs) end_time = time.time() execution_time = end_time - start_time if isinstance(result, dict): result['total_execution_time'] = execution_time else: result = {'result': result, 'total_execution_time': execution_time} return result return wrapper def check_api_key(x_api_key: str = Header(...)): api_key = os.environ.get("WHISPER_API_KEY") if not api_key or x_api_key != api_key: raise HTTPException(status_code=401, detail="Invalid or missing API key") return x_api_key @app.post("/transcribe_audio_file") @timeit async def transcribe_audio_file( file: UploadFile = File(...), task: str = Form("transcribe"), return_timestamps: bool = Form(False), api_key: str = Depends(check_api_key) ) -> Dict[str, Any]: logger.debug("Starting transcribe_audio_file function") logger.debug(f"Received parameters - task: {task}, return_timestamps: {return_timestamps}") try: audio_data = await file.read() file_size = len(audio_data) file_size_mb = file_size / (1024 * 1024) logger.debug(f"Audio file size: {file_size} bytes ({file_size_mb:.2f}MB)") except Exception as e: logger.error(f"Error reading audio file: {str(e)}", exc_info=True) raise HTTPException(status_code=400, detail=f"Error reading audio file: {str(e)}") return await process_audio(audio_data, file_size_mb, task, return_timestamps) @app.post("/transcribe_audio_base64") @timeit async def transcribe_audio_base64( request: TranscribeAudioRequest, api_key: str = Depends(check_api_key) ) -> Dict[str, Any]: logger.debug("Starting transcribe_audio_base64 function") logger.debug(f"Received parameters - task: {request.task}, return_timestamps: {request.return_timestamps}") try: audio_data = base64.b64decode(request.audio_base64) file_size = len(audio_data) file_size_mb = file_size / (1024 * 1024) logger.debug(f"Decoded audio data size: {file_size} bytes ({file_size_mb:.2f}MB)") except Exception as e: logger.error(f"Error decoding base64 audio data: {str(e)}", exc_info=True) raise HTTPException(status_code=400, detail=f"Error decoding base64 audio data: {str(e)}") return await process_audio(audio_data, file_size_mb, request.task, request.return_timestamps) async def process_audio(audio_data: bytes, file_size_mb: float, task: str, return_timestamps: bool) -> Dict[str, Any]: if file_size_mb > FILE_LIMIT_MB: logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB") raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.") try: logger.debug("Performing ffmpeg read on audio data") inputs = ffmpeg_read(audio_data, pipeline.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} logger.debug("ffmpeg read completed successfully") except Exception as e: logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True) raise HTTPException(status_code=500, detail=f"Error processing audio data: {str(e)}") logger.debug("Calling tqdm_generate to transcribe audio") try: text, runtime, timing_info = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s") except Exception as e: logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True) raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}") logger.debug("Audio processing completed successfully") return jsonable_encoder({ "text": text, "runtime": runtime, "timing_info": timing_info }) def tqdm_generate(inputs: dict, task: str, return_timestamps: bool): start_time = time.time() logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}") inputs_len = inputs["array"].shape[0] logger.debug(f"Input array length: {inputs_len}") all_chunk_start_idx = np.arange(0, inputs_len, step) num_samples = len(all_chunk_start_idx) num_batches = math.ceil(num_samples / BATCH_SIZE) logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}") logger.debug("Preprocessing audio for inference") try: dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) logger.debug("Preprocessing completed successfully") except Exception as e: logger.error(f"Error in preprocessing: {str(e)}", exc_info=True) raise model_outputs = [] transcription_start_time = time.time() logger.debug("Starting transcription...") try: for i, batch in enumerate(dataloader): logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples") batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True) model_outputs.append(batch_output) logger.debug(f"Batch {i+1} processed successfully") except Exception as e: logger.error(f"Error during batch processing: {str(e)}", exc_info=True) raise transcription_runtime = time.time() - transcription_start_time logger.debug(f"Transcription completed in {transcription_runtime:.2f}s") logger.debug("Post-processing transcription results") try: post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) logger.debug("Post-processing completed successfully") except Exception as e: logger.error(f"Error in post-processing: {str(e)}", exc_info=True) raise text = post_processed["text"] if return_timestamps: timestamps = post_processed.get("chunks") timestamps = [ f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps ] text = "\n".join(str(feature) for feature in timestamps) total_processing_time = time.time() - start_time logger.debug("tqdm_generate function completed successfully") return text, transcription_runtime, { "transcription_time": transcription_runtime, "total_processing_time": total_processing_time } def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): if seconds is not None: milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" else: # we have a malformed timestamp so just return it as is return seconds