Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,49 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
from tensorflow.keras.preprocessing.image import img_to_array
|
4 |
-
from tensorflow.keras.models import load_model
|
5 |
-
from PIL import Image, ImageOps
|
6 |
import json
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
#
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def predict(image: Image.Image):
|
16 |
-
#
|
17 |
img = ImageOps.exif_transpose(image).convert("RGB")
|
18 |
img = ImageOps.fit(img, IMG_SIZE, Image.Resampling.LANCZOS)
|
19 |
|
20 |
-
#
|
21 |
-
arr = img_to_array(img)
|
22 |
arr = np.expand_dims(arr, 0)
|
23 |
-
probs = model.predict(arr)[0]
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
mapping = {
|
29 |
-
|
30 |
-
# devolve (rΓ³tulo, JSON-formatado das probabilidades)
|
31 |
-
return cls, json.dumps(mapping, indent=2)
|
32 |
|
|
|
|
|
|
|
|
|
33 |
demo = gr.Interface(
|
34 |
fn=predict,
|
35 |
-
inputs=gr.Image(type="pil", label="Carrega
|
36 |
-
outputs=[
|
37 |
-
|
38 |
-
gr.Code(label="Probabilidades (label:valor)")
|
39 |
-
],
|
40 |
-
title="CropVision β classificaΓ§Γ£o de folhas",
|
41 |
-
description="Healthy / Leaf Blight / Black Rot / ESCA"
|
42 |
)
|
43 |
|
44 |
-
if __name__
|
45 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
4 |
+
from PIL import ImageOps, Image
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
|
8 |
+
# ββββββββββββββββββββββ
|
9 |
+
# 1) CARREGA O MAPEAMENTO EXATO de classes
|
10 |
+
# no teu treino, geraste um label_map.json com:
|
11 |
+
# json.dump(enc.classes_.tolist(), open("label_map.json","w"))
|
12 |
+
# subiste esse label_map.json junto do modelo
|
13 |
+
CLASS_ORDER = json.load(open("label_map.json"))
|
14 |
|
15 |
+
# ββββββββββββββββββββββ
|
16 |
+
# 2) PRΓ-PROCESSAMENTO robusto para fotos de telemΓ³vel
|
17 |
+
IMG_SIZE = (224, 224)
|
18 |
+
MODEL_PATH= "cropvision_model.keras"
|
19 |
+
model = load_model(MODEL_PATH)
|
20 |
|
21 |
def predict(image: Image.Image):
|
22 |
+
# corrige rotaΓ§Γ£o EXIF e faz um crop centrado
|
23 |
img = ImageOps.exif_transpose(image).convert("RGB")
|
24 |
img = ImageOps.fit(img, IMG_SIZE, Image.Resampling.LANCZOS)
|
25 |
|
26 |
+
# normaliza e infere
|
27 |
+
arr = img_to_array(img)/255.0
|
28 |
arr = np.expand_dims(arr, 0)
|
29 |
+
probs = model.predict(arr)[0]
|
30 |
|
31 |
+
# escolhe a classe e devolve tambΓ©m todas as probabilidades
|
32 |
+
idx = int(np.argmax(probs))
|
33 |
+
label = CLASS_ORDER[idx]
|
34 |
+
mapping = {CLASS_ORDER[i]: float(probs[i]) for i in range(len(probs))}
|
|
|
|
|
|
|
35 |
|
36 |
+
return label, f"{mapping}"
|
37 |
+
|
38 |
+
# ββββββββββββββββββββββ
|
39 |
+
# 3) Gradio UI
|
40 |
demo = gr.Interface(
|
41 |
fn=predict,
|
42 |
+
inputs=gr.Image(type="pil", label="Carrega folha"),
|
43 |
+
outputs=[gr.Textbox(label="Classe"), gr.Code(label="Probabilidades")],
|
44 |
+
title="CropVision"
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
|
47 |
+
if __name__=="__main__":
|
48 |
demo.launch()
|
49 |
+
|