Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
-
|
|
|
4 |
|
5 |
-
# 1)
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
def predict(image: Image.Image):
|
15 |
-
# Opcional: corrige EXIF e redimensiona como antes
|
16 |
-
image = image.convert("RGB").resize((224,224))
|
17 |
-
|
18 |
-
# Zero‐shot classification
|
19 |
-
res = classifier(image, candidate_labels=LABELS)
|
20 |
-
# res é lista de dicts: [{"label":..., "score":...}, ...]
|
21 |
-
|
22 |
-
# Mapeia para texto ordenado
|
23 |
-
probs = {item["label"]: float(item["score"]) for item in res}
|
24 |
-
# Escolhe o mais provável
|
25 |
-
best = max(probs, key=probs.get)
|
26 |
-
|
27 |
-
# Formata saída
|
28 |
-
prob_lines = "\n".join(f"{lbl}: {probs[lbl]:.2f}" for lbl in LABELS)
|
29 |
return best, prob_lines
|
30 |
|
31 |
-
# 3)
|
32 |
demo = gr.Interface(
|
33 |
fn=predict,
|
34 |
-
inputs=gr.Image(type="pil", label="Carrega
|
35 |
outputs=[
|
36 |
gr.Textbox(label="Classe predita"),
|
37 |
-
gr.Textbox(label="Probabilidades
|
38 |
],
|
39 |
-
title="CropVision
|
40 |
-
description="
|
41 |
)
|
42 |
|
43 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageOps
|
3 |
+
import torch
|
4 |
+
from transformers import CLIPProcessor, CLIPModel
|
5 |
|
6 |
+
# ─── 1) Carrega modelo e processor CLIP fine-tuned ───
|
7 |
+
MODEL_ID = "Keetawan/clip-vit-large-patch14-plant-disease-finetuned"
|
8 |
+
processor = CLIPProcessor.from_pretrained(MODEL_ID)
|
9 |
+
model = CLIPModel.from_pretrained(MODEL_ID)
|
10 |
+
|
11 |
+
# ─── 2) Labels que o modelo conhece ───
|
12 |
+
HF_LABELS = [
|
13 |
+
"Grape leaf with Black rot",
|
14 |
+
"Grape leaf with Esca (Black Measles)",
|
15 |
+
"Grape leaf with Leaf blight (Isariopsis Leaf Spot)",
|
16 |
+
"Healthy Grape leaf"
|
17 |
+
]
|
18 |
+
# Mapeamento para as tuas classes curtas
|
19 |
+
MAP = {
|
20 |
+
"Grape leaf with Black rot": "Black Rot",
|
21 |
+
"Grape leaf with Esca (Black Measles)": "ESCA",
|
22 |
+
"Grape leaf with Leaf blight (Isariopsis Leaf Spot)": "Leaf Blight",
|
23 |
+
"Healthy Grape leaf": "Healthy"
|
24 |
+
}
|
25 |
+
|
26 |
+
def predict(img: Image.Image):
|
27 |
+
# Pré-processamento igual ao notebook
|
28 |
+
img = ImageOps.exif_transpose(img).convert("RGB")
|
29 |
+
img = img.resize((224,224))
|
30 |
+
|
31 |
+
# Zero-shot inference CLIP
|
32 |
+
inputs = processor(text=HF_LABELS, images=img, return_tensors="pt", padding=True)
|
33 |
+
outputs = model(**inputs)
|
34 |
+
probs = outputs.logits_per_image.softmax(dim=1)[0].tolist()
|
35 |
+
|
36 |
+
# Constrói dicionário label→prob
|
37 |
+
mapping = { MAP[HF_LABELS[i]]: probs[i] for i in range(len(probs)) }
|
38 |
+
# Escolhe a classe de maior probabilidade
|
39 |
+
best = max(mapping, key=mapping.get)
|
40 |
|
41 |
+
# Formata as probabilidades
|
42 |
+
prob_lines = "\n".join(f"{lbl}: {mapping[lbl]:.2f}" for lbl in ["Healthy","Leaf Blight","Black Rot","ESCA"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return best, prob_lines
|
44 |
|
45 |
+
# ─── 3) UI Gradio ───────────────────────────────────────
|
46 |
demo = gr.Interface(
|
47 |
fn=predict,
|
48 |
+
inputs=gr.Image(type="pil", label="Carrega uma folha"),
|
49 |
outputs=[
|
50 |
gr.Textbox(label="Classe predita"),
|
51 |
+
gr.Textbox(label="Probabilidades")
|
52 |
],
|
53 |
+
title="CropVision – CLIP Zero-Shot Fine-Tuned",
|
54 |
+
description="Healthy / Leaf Blight / Black Rot / ESCA"
|
55 |
)
|
56 |
|
57 |
if __name__ == "__main__":
|