File size: 13,361 Bytes
afbb015
 
 
 
 
 
69e60db
 
afbb015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130b6ee
 
 
 
 
 
afbb015
 
 
 
 
 
678d750
 
afbb015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76df722
afbb015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76df722
afbb015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
import shutil
import os


from langchain_community.vectorstores import FAISS
#from langchain_community.document_loaders import PyPDFLoader
from langchain.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain_openai import ChatOpenAI
import torch
import fitz
from dotenv import load_dotenv, set_key

load_dotenv(dotenv_path=".env")

list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2","gpt-4o-mini"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load and split PDF document
def load_doc():
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    path="pdfs"
    loaders = []
    for file in os.listdir(path):
        file_path = os.path.abspath(os.path.join(path, file))
        print(f"Processing file: {file_path}")

        if os.path.isfile(file_path):
            loader = PyMuPDFLoader(file_path)
            loaders.append(loader)

    pages = []
    for loader in loaders:
        pages.extend(loader.load())

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = 100,
        chunk_overlap = 16
    )

    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits):
    embeddings = HuggingFaceEmbeddings()
    vectordb = FAISS.from_documents(splits, embeddings)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
        llm = HuggingFaceEndpoint(
            repo_id=llm_model,
            huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"),
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
        )
    elif llm_model== "gpt-4o-mini":
        os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
        llm = ChatOpenAI(
            model_name="gpt-4o-mini",
            temperature = temperature,
            max_tokens = max_tokens,
        )
    else:
        llm = HuggingFaceEndpoint(
            huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"),
            repo_id=llm_model,
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
        )

    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever=vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
    if not os.path.exists("pdfs"):
      os.mkdir("pdfs")
    for file_obj in list_file_obj:
      shutil.copy(file_obj.name,"pdfs")
    # Load document and create splits
    doc_splits = load_doc()
    # Create or load vector database
    vector_db = create_db(doc_splits)
    return vector_db, "Database created!"

# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    # print("llm_option",llm_option)
    llm_name = list_llm[llm_option]
    print("llm_name: ",llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "QA chain initialized. Chatbot is ready!"


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history


def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    # Generate response using QA chain
    response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    # Append user message and response to chat history
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def setup_gradio_interface():
    with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        gr.HTML("<center><h1>RAG PDF Chatbot</h1><center>")
        gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents.\
        <b>Please do not upload confidential documents.</b>
        """)

        def set_env_vars(openai_key, huggingface_token):
              """將 API 金鑰設為環境變數並儲存至 .env"""
              if openai_key:
                  os.environ["OPENAI_API_KEY"] = openai_key
                  set_key(".env", "OPENAI_API_KEY", openai_key)
              if huggingface_token:
                  os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
                  set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token)
              return "Environment variables set successfully!"

        with gr.Tab("帳號輸入"):
              with gr.Row():
                  with gr.Column():
                      gr.Markdown("<b>Step 1 - Input OpenAI API Key</b>")
                      with gr.Row():
                           openai_key_input = gr.Textbox(
                              label="OpenAI API Key",
                              placeholder="Enter your OpenAI API Key",
                              value=os.getenv("OPENAI_API_KEY", ""),
                              type="password",
                          )
                  with gr.Column():
                      gr.Markdown("<b>Step 2 - Input HuggingFaceHub API Token</b>")
                      with gr.Row():
                            huggingface_token_input = gr.Textbox(
                                label="HuggingFaceHub API Token",
                                placeholder="Enter your HuggingFaceHub API Key",
                                value=os.getenv("HUGGINGFACEHUB_API_TOKEN", ""),
                                type="password",
                           )
                  submit_button = gr.Button("Submit")
              status_output = gr.Label()

        with gr.Tab("對話機器人"):
              with gr.Row():
                  with gr.Column():
                      gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
                      with gr.Row():
                          document = gr.Files(height=300, file_count="multiple", label="Upload PDF documents")
                      with gr.Row():
                          db_btn = gr.Button("Create vector database")
                      with gr.Row():
                              db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
                      gr.Markdown("<style>body { font-size: 16px; }</style><b>Step 2 - Select Large Language Model (LLM) and input parameters</b>")
                      with gr.Row():
                          llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
                      with gr.Row():
                          with gr.Accordion("LLM input parameters", open=False):
                              with gr.Row():
                                  slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
                              with gr.Row():
                                  slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
                              with gr.Row():
                                      slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
                      with gr.Row():
                          qachain_btn = gr.Button("Initialize Question Answering Chatbot")
                      with gr.Row():
                              llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",

                  with gr.Column():
                      gr.Markdown("<b>Step 3 - Chat with your Document</b>")
                      chatbot = gr.Chatbot(height=505)
                      with gr.Accordion("Relevent context from the source document", open=False):
                          with gr.Row():
                              doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                              source1_page = gr.Number(label="Page", scale=1)
                          with gr.Row():
                              doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                              source2_page = gr.Number(label="Page", scale=1)
                          with gr.Row():
                              doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                              source3_page = gr.Number(label="Page", scale=1)
                      with gr.Row():
                          msg = gr.Textbox(placeholder="Ask a question", container=True)
                      with gr.Row():
                          submit_btn = gr.Button("Submit")
                          clear_btn = gr.ClearButton([msg, chatbot], value="Clear")

              # Preprocessing events
              db_btn.click(initialize_database, \
                  inputs=[document], \
                  outputs=[vector_db, db_progress])
              qachain_btn.click(initialize_LLM, \
                  inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
                  outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
                  inputs=None, \
                  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
                  queue=False)

              # Chatbot events
              msg.submit(conversation, \
                  inputs=[qa_chain, msg, chatbot], \
                  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
                  queue=False)
              submit_btn.click(conversation, \
                  inputs=[qa_chain, msg, chatbot], \
                  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
                  queue=False)
              clear_btn.click(lambda:[None,"",0,"",0,"",0], \
                  inputs=None, \
                  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
                  queue=False)

        def set_env_vars(openai_key, huggingface_token):
              """將 API 金鑰設為環境變數並儲存至 .env"""
              if openai_key:
                  os.environ["OPENAI_API_KEY"] = openai_key
                  set_key(".env", "OPENAI_API_KEY", openai_key)
              if huggingface_token:
                  os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
                  set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token)
              return "Environment variables set successfully!"

    # 綁定按鈕與設置環境變數的函數
        submit_button.click(
              set_env_vars,
              inputs=[openai_key_input, huggingface_token_input],
              outputs=[status_output]
          )

    return demo

demo = setup_gradio_interface()
demo.launch(debug=True)