File size: 13,361 Bytes
afbb015 69e60db afbb015 130b6ee afbb015 678d750 afbb015 76df722 afbb015 76df722 afbb015 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
import shutil
import os
from langchain_community.vectorstores import FAISS
#from langchain_community.document_loaders import PyPDFLoader
from langchain.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain_openai import ChatOpenAI
import torch
import fitz
from dotenv import load_dotenv, set_key
load_dotenv(dotenv_path=".env")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2","gpt-4o-mini"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load and split PDF document
def load_doc():
# Processing for one document only
# loader = PyPDFLoader(file_path)
# pages = loader.load()
path="pdfs"
loaders = []
for file in os.listdir(path):
file_path = os.path.abspath(os.path.join(path, file))
print(f"Processing file: {file_path}")
if os.path.isfile(file_path):
loader = PyMuPDFLoader(file_path)
loaders.append(loader)
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 100,
chunk_overlap = 16
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"),
temperature = temperature,
max_new_tokens = max_tokens,
top_k = top_k,
)
elif llm_model== "gpt-4o-mini":
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
llm = ChatOpenAI(
model_name="gpt-4o-mini",
temperature = temperature,
max_tokens = max_tokens,
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"),
repo_id=llm_model,
temperature = temperature,
max_new_tokens = max_tokens,
top_k = top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever=vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
if not os.path.exists("pdfs"):
os.mkdir("pdfs")
for file_obj in list_file_obj:
shutil.copy(file_obj.name,"pdfs")
# Load document and create splits
doc_splits = load_doc()
# Create or load vector database
vector_db = create_db(doc_splits)
return vector_db, "Database created!"
# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
# print("llm_option",llm_option)
llm_name = list_llm[llm_option]
print("llm_name: ",llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "QA chain initialized. Chatbot is ready!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
# Generate response using QA chain
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
# Langchain sources are zero-based
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
# Append user message and response to chat history
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def setup_gradio_interface():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF Chatbot</h1><center>")
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents.\
<b>Please do not upload confidential documents.</b>
""")
def set_env_vars(openai_key, huggingface_token):
"""將 API 金鑰設為環境變數並儲存至 .env"""
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
set_key(".env", "OPENAI_API_KEY", openai_key)
if huggingface_token:
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token)
return "Environment variables set successfully!"
with gr.Tab("帳號輸入"):
with gr.Row():
with gr.Column():
gr.Markdown("<b>Step 1 - Input OpenAI API Key</b>")
with gr.Row():
openai_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API Key",
value=os.getenv("OPENAI_API_KEY", ""),
type="password",
)
with gr.Column():
gr.Markdown("<b>Step 2 - Input HuggingFaceHub API Token</b>")
with gr.Row():
huggingface_token_input = gr.Textbox(
label="HuggingFaceHub API Token",
placeholder="Enter your HuggingFaceHub API Key",
value=os.getenv("HUGGINGFACEHUB_API_TOKEN", ""),
type="password",
)
submit_button = gr.Button("Submit")
status_output = gr.Label()
with gr.Tab("對話機器人"):
with gr.Row():
with gr.Column():
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", label="Upload PDF documents")
with gr.Row():
db_btn = gr.Button("Create vector database")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
gr.Markdown("<style>body { font-size: 16px; }</style><b>Step 2 - Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
with gr.Column():
gr.Markdown("<b>Step 3 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevent context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Preprocessing events
db_btn.click(initialize_database, \
inputs=[document], \
outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
def set_env_vars(openai_key, huggingface_token):
"""將 API 金鑰設為環境變數並儲存至 .env"""
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
set_key(".env", "OPENAI_API_KEY", openai_key)
if huggingface_token:
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token)
return "Environment variables set successfully!"
# 綁定按鈕與設置環境變數的函數
submit_button.click(
set_env_vars,
inputs=[openai_key_input, huggingface_token_input],
outputs=[status_output]
)
return demo
demo = setup_gradio_interface()
demo.launch(debug=True) |