Spaces:
Sleeping
Sleeping
import gradio as gr | |
import shutil | |
import os | |
from langchain_community.vectorstores import FAISS | |
#from langchain_community.document_loaders import PyPDFLoader | |
from langchain.document_loaders import PyMuPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain_openai import ChatOpenAI | |
import torch | |
import fitz | |
from dotenv import load_dotenv, set_key | |
load_dotenv(dotenv_path=".env") | |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2","gpt-4o-mini"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# Load and split PDF document | |
def load_doc(): | |
# Processing for one document only | |
# loader = PyPDFLoader(file_path) | |
# pages = loader.load() | |
path="pdfs" | |
loaders = [] | |
for file in os.listdir(path): | |
file_path = os.path.abspath(os.path.join(path, file)) | |
print(f"Processing file: {file_path}") | |
if os.path.isfile(file_path): | |
loader = PyMuPDFLoader(file_path) | |
loaders.append(loader) | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 200, | |
chunk_overlap = 64 | |
) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Create vector database | |
def create_db(splits): | |
embeddings = HuggingFaceEmbeddings() | |
vectordb = FAISS.from_documents(splits, embeddings) | |
return vectordb | |
# Initialize langchain LLM chain | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"), | |
temperature = temperature, | |
max_new_tokens = max_tokens, | |
top_k = top_k, | |
) | |
elif llm_model== "gpt-4o-mini": | |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") | |
llm = ChatOpenAI( | |
model_name="gpt-4o-mini", | |
temperature = temperature, | |
max_tokens = max_tokens, | |
) | |
else: | |
llm = HuggingFaceEndpoint( | |
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"), | |
repo_id=llm_model, | |
temperature = temperature, | |
max_new_tokens = max_tokens, | |
top_k = top_k, | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever=vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
return qa_chain | |
# Initialize database | |
def initialize_database(list_file_obj, progress=gr.Progress()): | |
if not os.path.exists("pdfs"): | |
os.mkdir("pdfs") | |
for file_obj in list_file_obj: | |
shutil.copy(file_obj.name,"pdfs") | |
# Load document and create splits | |
doc_splits = load_doc() | |
# Create or load vector database | |
vector_db = create_db(doc_splits) | |
return vector_db, "Database created!" | |
# Initialize LLM | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
# print("llm_option",llm_option) | |
llm_name = list_llm[llm_option] | |
print("llm_name: ",llm_name) | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "QA chain initialized. Chatbot is ready!" | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
# Generate response using QA chain | |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Helpful Answer:") != -1: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
# Langchain sources are zero-based | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
# Append user message and response to chat history | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
def setup_gradio_interface(): | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
gr.HTML("<center><h1>RAG PDF Chatbot</h1><center>") | |
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents.\ | |
<b>Please do not upload confidential documents.</b> | |
""") | |
def set_env_vars(openai_key, huggingface_token): | |
"""將 API 金鑰設為環境變數並儲存至 .env""" | |
if openai_key: | |
os.environ["OPENAI_API_KEY"] = openai_key | |
set_key(".env", "OPENAI_API_KEY", openai_key) | |
if huggingface_token: | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token | |
set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token) | |
return "Environment variables set successfully!" | |
with gr.Tab("帳號輸入"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("<b>Step 1 - Input OpenAI API Key</b>") | |
with gr.Row(): | |
openai_key_input = gr.Textbox( | |
label="OpenAI API Key", | |
placeholder="Enter your OpenAI API Key", | |
value=os.getenv("OPENAI_API_KEY", ""), | |
type="password", | |
) | |
with gr.Column(): | |
gr.Markdown("<b>Step 2 - Input HuggingFaceHub API Token</b>") | |
with gr.Row(): | |
huggingface_token_input = gr.Textbox( | |
label="HuggingFaceHub API Token", | |
placeholder="Enter your HuggingFaceHub API Key", | |
value=os.getenv("HUGGINGFACEHUB_API_TOKEN", ""), | |
type="password", | |
) | |
submit_button = gr.Button("Submit") | |
status_output = gr.Label() | |
with gr.Tab("對話機器人"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>") | |
with gr.Row(): | |
document = gr.Files(height=300, file_count="multiple", label="Upload PDF documents") | |
with gr.Row(): | |
db_btn = gr.Button("Create vector database") | |
with gr.Row(): | |
db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status", | |
gr.Markdown("<style>body { font-size: 16px; }</style><b>Step 2 - Select Large Language Model (LLM) and input parameters</b>") | |
with gr.Row(): | |
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False | |
with gr.Row(): | |
with gr.Accordion("LLM input parameters", open=False): | |
with gr.Row(): | |
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True) | |
with gr.Row(): | |
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True) | |
with gr.Row(): | |
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True) | |
with gr.Row(): | |
qachain_btn = gr.Button("Initialize Question Answering Chatbot") | |
with gr.Row(): | |
llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status", | |
with gr.Column(): | |
gr.Markdown("<b>Step 3 - Chat with your Document</b>") | |
chatbot = gr.Chatbot(height=505) | |
with gr.Accordion("Relevent context from the source document", open=False): | |
with gr.Row(): | |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) | |
source2_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) | |
source3_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
msg = gr.Textbox(placeholder="Ask a question", container=True) | |
with gr.Row(): | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear") | |
# Preprocessing events | |
db_btn.click(initialize_database, \ | |
inputs=[document], \ | |
outputs=[vector_db, db_progress]) | |
qachain_btn.click(initialize_LLM, \ | |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \ | |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \ | |
inputs=None, \ | |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
# Chatbot events | |
msg.submit(conversation, \ | |
inputs=[qa_chain, msg, chatbot], \ | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
submit_btn.click(conversation, \ | |
inputs=[qa_chain, msg, chatbot], \ | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
clear_btn.click(lambda:[None,"",0,"",0,"",0], \ | |
inputs=None, \ | |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
def set_env_vars(openai_key, huggingface_token): | |
"""將 API 金鑰設為環境變數並儲存至 .env""" | |
if openai_key: | |
os.environ["OPENAI_API_KEY"] = openai_key | |
set_key(".env", "OPENAI_API_KEY", openai_key) | |
if huggingface_token: | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token | |
set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token) | |
return "Environment variables set successfully!" | |
# 綁定按鈕與設置環境變數的函數 | |
submit_button.click( | |
set_env_vars, | |
inputs=[openai_key_input, huggingface_token_input], | |
outputs=[status_output] | |
) | |
return demo | |
demo = setup_gradio_interface() | |
demo.launch(debug=True) |