Spaces:
Runtime error
Runtime error
import base64 | |
import gradio as gr | |
import librosa | |
import logging | |
import os | |
import soundfile as sf | |
import subprocess | |
import tempfile | |
import urllib.request | |
from datetime import datetime | |
from time import time | |
from examples import examples | |
from model import UETASRModel | |
def get_duration(filename: str) -> float: | |
return librosa.get_duration(path=filename) | |
def convert_to_wav(in_filename: str) -> str: | |
out_filename = os.path.splitext(in_filename)[0] + ".wav" | |
logging.info(f"Converting {in_filename} to {out_filename}") | |
y, sr = librosa.load(in_filename, sr=16000) | |
sf.write(out_filename, y, sr) | |
return out_filename | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process_url( | |
url: str, | |
decoding_method: str, | |
beam_size: int, | |
max_symbols_per_step: int, | |
): | |
logging.info(f"Processing URL: {url}") | |
with tempfile.NamedTemporaryFile() as f: | |
try: | |
urllib.request.urlretrieve(url, f.name) | |
return process(in_filename=f.name, | |
decoding_method=decoding_method, | |
beam_size=beam_size, | |
max_symbols_per_step=max_symbols_per_step) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process_uploaded_file( | |
in_filename: str, | |
decoding_method: str, | |
beam_size: int, | |
max_symbols_per_step: int, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
logging.info(f"Processing uploaded file: {in_filename}") | |
try: | |
return process(in_filename=in_filename, | |
decoding_method=decoding_method, | |
beam_size=beam_size, | |
max_symbols_per_step=max_symbols_per_step) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process_microphone( | |
in_filename: str, | |
decoding_method: str, | |
beam_size: int, | |
max_symbols_per_step: int, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
logging.info(f"Processing microphone: {in_filename}") | |
try: | |
return process(in_filename=in_filename, | |
decoding_method=decoding_method, | |
beam_size=beam_size, | |
max_symbols_per_step=max_symbols_per_step) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process( | |
in_filename: str, | |
decoding_method: str, | |
beam_size: int, | |
max_symbols_per_step: int, | |
): | |
logging.info(f"in_filename: {in_filename}") | |
filename = convert_to_wav(in_filename) | |
now = datetime.now() | |
date_time = now.strftime("%d/%m/%Y, %H:%M:%S.%f") | |
logging.info(f"Started at {date_time}") | |
repo_id = "thanhtvt/uetasr-conformer_30.3m" | |
start = time() | |
recognizer = UETASRModel(repo_id, | |
decoding_method, | |
beam_size, | |
max_symbols_per_step) | |
text = recognizer.predict(filename) | |
date_time = now.strftime("%d/%m/%Y, %H:%M:%S.%f") | |
end = time() | |
duration = get_duration(filename) | |
rtf = (end - start) / duration | |
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
info = f""" | |
Wave duration : {duration: .3f} s <br/> | |
Processing time: {end - start: .3f} s <br/> | |
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> | |
""" | |
if rtf > 1: | |
info += ( | |
"<br/>We are loading required resources for the first run. " | |
"Please run again to measure the real RTF.<br/>" | |
) | |
logging.info(info) | |
return text, build_html_output(info) | |
title = "Educa ASR" | |
description = """ | |
A space demo for Automatic Speech Recognition. | |
""" | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
decode_method_radio = gr.Radio( | |
label="Decoding method", | |
choices=["greedy_search", "beam_search"], | |
value="greedy_search", | |
interactive=True, | |
) | |
beam_size_slider = gr.Slider( | |
label="Beam size", | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=1, | |
interactive=False, | |
) | |
def interact_beam_slider(decoding_method): | |
if decoding_method == "greedy_search": | |
return gr.update(value=1, interactive=False) | |
else: | |
return gr.update(interactive=True) | |
decode_method_radio.change(interact_beam_slider, | |
decode_method_radio, | |
beam_size_slider) | |
max_symbols_per_step_slider = gr.Slider( | |
label="Maximum symbols per step", | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=5, | |
interactive=True, | |
visible=True, | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
uploaded_file = gr.Audio( | |
source="upload", # Choose between "microphone", "upload" | |
type="filepath", | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for recognition") | |
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") | |
uploaded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=uploaded_file, | |
outputs=[uploaded_output, uploaded_html_info], | |
fn=process_uploaded_file, | |
) | |
with gr.TabItem("Record from microphone"): | |
microphone = gr.Audio( | |
source="microphone", | |
type="filepath", | |
label="Record from microphone", | |
) | |
record_button = gr.Button("Submit for recognition") | |
recorded_output = gr.Textbox(label="Recognized speech from recordings") | |
recorded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=microphone, | |
outputs=[uploaded_output, uploaded_html_info], | |
fn=process_microphone, | |
) | |
with gr.TabItem("From URL"): | |
url_textbox = gr.Textbox( | |
max_lines=1, | |
placeholder="URL to an audio file", | |
label="URL", | |
interactive=True, | |
) | |
url_button = gr.Button("Submit for recognition") | |
url_output = gr.Textbox(label="Recognized speech from URL") | |
url_html_info = gr.HTML(label="Info") | |
upload_button.click( | |
process_uploaded_file, | |
inputs=[ | |
uploaded_file, | |
decode_method_radio, | |
beam_size_slider, | |
max_symbols_per_step_slider, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
) | |
record_button.click( | |
process_microphone, | |
inputs=[ | |
microphone, | |
decode_method_radio, | |
beam_size_slider, | |
max_symbols_per_step_slider, | |
], | |
outputs=[recorded_output, recorded_html_info], | |
) | |
url_button.click( | |
process_url, | |
inputs=[ | |
url_textbox, | |
decode_method_radio, | |
beam_size_slider, | |
max_symbols_per_step_slider, | |
], | |
outputs=[url_output, url_html_info], | |
) | |
gr.Markdown(description) | |
if __name__ == "__main__": | |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
demo.launch() | |