Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
# st.title('Ask Me Anything π') | |
st.markdown("<h1 style='text-align: center; color: white;'>Ask Me Anything π</h1>", unsafe_allow_html=True) | |
st.markdown('') | |
st.markdown('') | |
st.session_state['new']=True | |
# if st.session_state.new==True: | |
# os.system('!pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio===0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html') | |
# os.system('!pip install transformers') | |
# st.session_state.new=False | |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
form = st.form(key='my_form') | |
# creating the q/a pipeline | |
nlp = pipeline('question-answering', model='deepset/roberta-base-squad2', tokenizer='deepset/roberta-base-squad2') | |
text = form.text_area('Gimme Stuff To Study π') | |
submit_button = form.form_submit_button(label='Study This') | |
st.markdown('---') | |
ques=st.text_input('Ask Me Anything From The Information You Have Given') | |
#forming a question directory | |
ques_dict = { | |
'question':ques, | |
'context':text | |
} | |
butt = st.button('Ask π€·π»') | |
if butt==True: | |
results = nlp(ques_dict) | |
st.markdown('---') | |
st.subheader('Here Is Your Answer') | |
st.success(results['answer']) | |
st.balloons() | |