#___________________________________________________________________________________________________________________________ import streamlit as st import os #___________________________________________________________________________________________________________________________ import torch from torch import autocast from diffusers import StableDiffusionPipeline from datasets import load_dataset from PIL import Image import re #___________________________________________________________________________________________________________________________ st.title('IMGTEXTA') #___________________________________________________________________________________________________________________________ model_id = "CompVis/stable-diffusion-v1-4" device = "cpu" #___________________________________________________________________________________________________________________________ pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=st.secrets["AUTH_KEY"], torch_dtype=torch.float32) def dummy(images, **kwargs): return images, False pipe.safety_checker = dummy #___________________________________________________________________________________________________________________________ def infer(prompt, width, height, steps, scale, seed): if seed == -1: images_list = pipe( [prompt], height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=torch.Generator(device=device).manual_seed(seed)) else: images_list = pipe( [prompt], height=height, width=width, num_inference_steps=steps, guidance_scale=scale) return images_list["sample"] #___________________________________________________________________________________________________________________________ def onclick(prompt): st.image(infer(prompt,512,512,30,7.5,-1)) prompt=st.text_input('Enter Your Prompt') if prompt==True: onclick(prompt) #___________________________________________________________________________________________________________________________