Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- LICENSE +21 -0
- Model.py +697 -0
- maintenance_report.csv +0 -0
- requirements.txt +10 -0
- train.csv +0 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Divija Joshi
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
Model.py
ADDED
@@ -0,0 +1,697 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingRegressor
|
6 |
+
from sklearn.metrics import classification_report, mean_squared_error, precision_recall_curve, roc_curve, auc
|
7 |
+
from sklearn.impute import SimpleImputer
|
8 |
+
from sklearn.pipeline import Pipeline
|
9 |
+
from sklearn.feature_selection import SelectFromModel
|
10 |
+
import joblib
|
11 |
+
import streamlit as st
|
12 |
+
import plotly.express as px
|
13 |
+
import plotly.graph_objects as go
|
14 |
+
from datetime import datetime, timedelta
|
15 |
+
import seaborn as sns
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import os
|
18 |
+
|
19 |
+
# Set page config
|
20 |
+
st.set_page_config(
|
21 |
+
page_title="Predictive Maintenance Dashboard",
|
22 |
+
page_icon="π§",
|
23 |
+
layout="wide",
|
24 |
+
initial_sidebar_state="expanded"
|
25 |
+
)
|
26 |
+
|
27 |
+
# Custom CSS for better styling
|
28 |
+
st.markdown("""
|
29 |
+
<style>
|
30 |
+
.main {
|
31 |
+
padding: 0rem 1rem;
|
32 |
+
}
|
33 |
+
.stAlert {
|
34 |
+
padding: 1rem;
|
35 |
+
margin: 1rem 0;
|
36 |
+
}
|
37 |
+
.metric-card {
|
38 |
+
background-color: #f0f2f6;
|
39 |
+
padding: 1rem;
|
40 |
+
border-radius: 0.5rem;
|
41 |
+
}
|
42 |
+
</style>
|
43 |
+
""", unsafe_allow_html=True)
|
44 |
+
|
45 |
+
def load_and_prepare_data():
|
46 |
+
"""
|
47 |
+
ETL Pipeline for data preparation
|
48 |
+
Returns cleaned and feature-engineered dataset
|
49 |
+
"""
|
50 |
+
# Load dataset
|
51 |
+
data = pd.read_csv('playground-series-s3e17/train.csv')
|
52 |
+
|
53 |
+
# Data Cleaning
|
54 |
+
data = data.ffill().bfill()
|
55 |
+
|
56 |
+
# Feature Engineering
|
57 |
+
data['Failure'] = data[['TWF', 'HDF', 'PWF', 'OSF', 'RNF']].sum(axis=1) > 0
|
58 |
+
|
59 |
+
# Advanced Feature Engineering
|
60 |
+
data['Torque_RollingMean'] = data['Torque [Nm]'].rolling(window=10, min_periods=1).mean()
|
61 |
+
data['RPM_Variance'] = data['Rotational speed [rpm]'].rolling(window=10, min_periods=1).var()
|
62 |
+
data['Temperature_Difference'] = data['Process temperature [K]'] - data['Air temperature [K]']
|
63 |
+
data['Power'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] / 9550 # Mechanical Power in kW
|
64 |
+
data['Temperature_Rate'] = data['Process temperature [K]'].diff().fillna(0)
|
65 |
+
data['Wear_Rate'] = data['Tool wear [min]'].diff().fillna(0)
|
66 |
+
data['Power_to_Wear_Ratio'] = data['Power'] / (data['Tool wear [min]'] + 1)
|
67 |
+
|
68 |
+
# Simulate maintenance history
|
69 |
+
data['Last_Maintenance'] = np.random.randint(0, 1000, size=len(data))
|
70 |
+
data['Maintenance_Count'] = np.random.randint(0, 5, size=len(data))
|
71 |
+
|
72 |
+
return data
|
73 |
+
|
74 |
+
@st.cache_data
|
75 |
+
def get_failure_patterns(data):
|
76 |
+
"""Analyze common patterns leading to failures"""
|
77 |
+
failure_data = data[data['Failure'] == 1]
|
78 |
+
patterns = {
|
79 |
+
'high_temp': failure_data[failure_data['Temperature_Difference'] > failure_data['Temperature_Difference'].mean()].shape[0],
|
80 |
+
'high_wear': failure_data[failure_data['Tool wear [min]'] > failure_data['Tool wear [min]'].mean()].shape[0],
|
81 |
+
'high_power': failure_data[failure_data['Power'] > failure_data['Power'].mean()].shape[0]
|
82 |
+
}
|
83 |
+
return patterns
|
84 |
+
|
85 |
+
def create_pipelines(model_params=None):
|
86 |
+
"""Create ML pipelines with configurable parameters"""
|
87 |
+
if model_params is None:
|
88 |
+
model_params = {
|
89 |
+
'n_estimators_clf': 200,
|
90 |
+
'max_depth_clf': 15,
|
91 |
+
'n_estimators_reg': 150,
|
92 |
+
'max_depth_reg': 7
|
93 |
+
}
|
94 |
+
|
95 |
+
# Use StratifiedKFold for classification
|
96 |
+
from sklearn.model_selection import StratifiedKFold
|
97 |
+
skf = StratifiedKFold(n_splits=5, random_state=42, shuffle=True)
|
98 |
+
|
99 |
+
clf_pipeline = Pipeline([
|
100 |
+
('imputer', SimpleImputer(strategy='mean')),
|
101 |
+
('scaler', StandardScaler()),
|
102 |
+
('feature_selection', SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42))),
|
103 |
+
('classifier', RandomForestClassifier(
|
104 |
+
n_estimators=model_params['n_estimators_clf'],
|
105 |
+
max_depth=model_params['max_depth_clf'],
|
106 |
+
class_weight='balanced',
|
107 |
+
random_state=42
|
108 |
+
))
|
109 |
+
])
|
110 |
+
|
111 |
+
reg_pipeline = Pipeline([
|
112 |
+
('imputer', SimpleImputer(strategy='mean')),
|
113 |
+
('scaler', StandardScaler()),
|
114 |
+
('feature_selection', SelectFromModel(GradientBoostingRegressor(n_estimators=100, random_state=42))),
|
115 |
+
('regressor', GradientBoostingRegressor(
|
116 |
+
n_estimators=model_params['n_estimators_reg'],
|
117 |
+
max_depth=model_params['max_depth_reg'],
|
118 |
+
learning_rate=0.1,
|
119 |
+
random_state=42
|
120 |
+
))
|
121 |
+
])
|
122 |
+
|
123 |
+
return clf_pipeline, reg_pipeline
|
124 |
+
|
125 |
+
def calculate_maintenance_metrics(failure_prob, tool_wear, last_maintenance, thresholds):
|
126 |
+
"""
|
127 |
+
Calculate maintenance recommendations based on predictions and customizable thresholds
|
128 |
+
"""
|
129 |
+
risk_threshold = thresholds['risk']
|
130 |
+
wear_threshold = thresholds['wear']
|
131 |
+
maintenance_age_threshold = thresholds['maintenance_age']
|
132 |
+
|
133 |
+
maintenance_due = (
|
134 |
+
(failure_prob > risk_threshold) |
|
135 |
+
(tool_wear > wear_threshold) |
|
136 |
+
(last_maintenance > maintenance_age_threshold)
|
137 |
+
)
|
138 |
+
|
139 |
+
priority = np.where(
|
140 |
+
failure_prob > 0.7, 'High',
|
141 |
+
np.where(failure_prob > 0.4, 'Medium', 'Low')
|
142 |
+
)
|
143 |
+
|
144 |
+
estimated_days = np.where(
|
145 |
+
maintenance_due,
|
146 |
+
0,
|
147 |
+
np.ceil((wear_threshold - tool_wear) / np.maximum(0.1, tool_wear.mean()))
|
148 |
+
)
|
149 |
+
|
150 |
+
next_maintenance = np.where(
|
151 |
+
maintenance_due,
|
152 |
+
'Immediate',
|
153 |
+
np.where(
|
154 |
+
estimated_days <= 7,
|
155 |
+
'Within 1 week',
|
156 |
+
np.where(
|
157 |
+
estimated_days <= 30,
|
158 |
+
'Within 1 month',
|
159 |
+
'No immediate action needed'
|
160 |
+
)
|
161 |
+
)
|
162 |
+
)
|
163 |
+
|
164 |
+
return maintenance_due, priority, next_maintenance, estimated_days
|
165 |
+
|
166 |
+
def create_failure_analysis_plots(data, X_train, y_train, X_test, y_test, predictions):
|
167 |
+
"""Create various failure analysis visualizations"""
|
168 |
+
|
169 |
+
# Train the model (assuming a RandomForestClassifier for this example)
|
170 |
+
model = RandomForestClassifier(n_estimators=100, max_depth=10)
|
171 |
+
model.fit(X_train, y_train) # Train the model with training data
|
172 |
+
|
173 |
+
# Time series of key metrics
|
174 |
+
fig1 = go.Figure()
|
175 |
+
fig1.add_trace(go.Scatter(
|
176 |
+
y=data['Tool wear [min]'],
|
177 |
+
name='Tool Wear',
|
178 |
+
line=dict(color='blue')
|
179 |
+
))
|
180 |
+
fig1.add_trace(go.Scatter(
|
181 |
+
y=data['Temperature_Difference'],
|
182 |
+
name='Temperature Difference',
|
183 |
+
line=dict(color='red')
|
184 |
+
))
|
185 |
+
fig1.add_trace(go.Scatter(
|
186 |
+
y=data['Power'],
|
187 |
+
name='Power',
|
188 |
+
line=dict(color='green')
|
189 |
+
))
|
190 |
+
fig1.update_layout(title='Key Metrics Over Time', xaxis_title='Observation')
|
191 |
+
|
192 |
+
# Failure probability distribution
|
193 |
+
fig2 = px.histogram(
|
194 |
+
predictions,
|
195 |
+
nbins=50,
|
196 |
+
title='Distribution of Failure Probabilities'
|
197 |
+
)
|
198 |
+
|
199 |
+
# Get predicted probabilities for the positive class
|
200 |
+
y_pred_proba = model.predict_proba(X_test)[:, 1] # Probabilities for the positive class (binary classification)
|
201 |
+
y_test_cls = y_test # True class labels
|
202 |
+
|
203 |
+
# ROC Curve
|
204 |
+
fpr, tpr, _ = roc_curve(y_test_cls, y_pred_proba)
|
205 |
+
roc_auc = auc(fpr, tpr)
|
206 |
+
fig3 = go.Figure()
|
207 |
+
fig3.add_trace(go.Scatter(
|
208 |
+
x=fpr, y=tpr,
|
209 |
+
mode='lines',
|
210 |
+
name=f'ROC Curve (AUC = {roc_auc:.2f})'
|
211 |
+
))
|
212 |
+
fig3.plot_bgcolor = 'white'
|
213 |
+
fig3.update_layout(
|
214 |
+
title='Receiver Operating Characteristic (ROC) Curve',
|
215 |
+
xaxis_title='False Positive Rate',
|
216 |
+
yaxis_title='True Positive Rate',
|
217 |
+
xaxis_range=[0, 1],
|
218 |
+
yaxis_range=[0, 1]
|
219 |
+
)
|
220 |
+
|
221 |
+
return fig1, fig2, fig3
|
222 |
+
|
223 |
+
def plot_maintenance_calendar(schedule_df):
|
224 |
+
"""Create an interactive maintenance calendar view"""
|
225 |
+
fig = px.timeline(
|
226 |
+
schedule_df,
|
227 |
+
x_start='Scheduled_Date',
|
228 |
+
x_end='Due_Date',
|
229 |
+
y='Equipment_ID',
|
230 |
+
color='Priority',
|
231 |
+
title='Maintenance Schedule Timeline'
|
232 |
+
)
|
233 |
+
fig.update_yaxes(autorange="reversed", title="Equipment ID")
|
234 |
+
fig.update_xaxes(title="Date")
|
235 |
+
return fig
|
236 |
+
|
237 |
+
def sidebar_controls():
|
238 |
+
"""Create sidebar controls for user input"""
|
239 |
+
st.sidebar.header('Dashboard Controls')
|
240 |
+
|
241 |
+
# Model Parameters
|
242 |
+
st.sidebar.subheader('Model Parameters')
|
243 |
+
n_estimators_clf = st.sidebar.slider('Number of Trees (Classification)', 50, 300, 200)
|
244 |
+
max_depth_clf = st.sidebar.slider('Max Tree Depth (Classification)', 5, 30, 15)
|
245 |
+
n_estimators_reg = st.sidebar.slider('Number of Trees (Regression)', 50, 300, 150)
|
246 |
+
max_depth_reg = st.sidebar.slider('Max Tree Depth (Regression)', 5, 30, 7)
|
247 |
+
|
248 |
+
# Threshold Settings
|
249 |
+
st.sidebar.subheader('Maintenance Thresholds')
|
250 |
+
risk_threshold = st.sidebar.slider('Risk Threshold', 0.0, 1.0, 0.3)
|
251 |
+
wear_threshold = st.sidebar.slider('Wear Threshold', 100, 300, 200)
|
252 |
+
maintenance_age = st.sidebar.slider('Maintenance Age Threshold', 500, 1000, 800)
|
253 |
+
|
254 |
+
# Visualization Settings
|
255 |
+
st.sidebar.subheader('Visualization Settings')
|
256 |
+
plot_height = st.sidebar.slider('Plot Height', 400, 800, 600)
|
257 |
+
color_theme = st.sidebar.selectbox('Color Theme', ['blues', 'reds', 'greens'])
|
258 |
+
|
259 |
+
return {
|
260 |
+
'model_params': {
|
261 |
+
'n_estimators_clf': n_estimators_clf,
|
262 |
+
'max_depth_clf': max_depth_clf,
|
263 |
+
'n_estimators_reg': n_estimators_reg,
|
264 |
+
'max_depth_reg': max_depth_reg
|
265 |
+
},
|
266 |
+
'thresholds': {
|
267 |
+
'risk': risk_threshold,
|
268 |
+
'wear': wear_threshold,
|
269 |
+
'maintenance_age': maintenance_age
|
270 |
+
},
|
271 |
+
'viz_params': {
|
272 |
+
'plot_height': plot_height,
|
273 |
+
'color_theme': color_theme
|
274 |
+
}
|
275 |
+
}
|
276 |
+
|
277 |
+
def main():
|
278 |
+
st.title("π§ Advanced Predictive Maintenance Dashboard")
|
279 |
+
|
280 |
+
# Get user input parameters
|
281 |
+
params = sidebar_controls()
|
282 |
+
|
283 |
+
# Introduction
|
284 |
+
with st.expander("βΉοΈ Dashboard Overview", expanded=True):
|
285 |
+
st.markdown("""
|
286 |
+
This dashboard provides comprehensive predictive maintenance analytics for manufacturing equipment:
|
287 |
+
|
288 |
+
1. *Real-time Monitoring*: Track equipment health metrics and failure predictions
|
289 |
+
2. *Maintenance Planning*: Get AI-powered maintenance recommendations
|
290 |
+
3. *Performance Analysis*: Analyze historical data and model performance
|
291 |
+
4. *Interactive Features*: Customize thresholds and visualization parameters
|
292 |
+
|
293 |
+
Use the sidebar controls to adjust model parameters and thresholds.
|
294 |
+
""")
|
295 |
+
|
296 |
+
# Load and prepare data
|
297 |
+
with st.spinner("Loading and preparing data..."):
|
298 |
+
data = load_and_prepare_data()
|
299 |
+
|
300 |
+
# Define features
|
301 |
+
feature_columns = [
|
302 |
+
'Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]',
|
303 |
+
'Torque [Nm]', 'Tool wear [min]', 'Torque_RollingMean', 'RPM_Variance',
|
304 |
+
'Temperature_Difference', 'Power', 'Temperature_Rate', 'Wear_Rate',
|
305 |
+
'Power_to_Wear_Ratio'
|
306 |
+
]
|
307 |
+
|
308 |
+
X = data[feature_columns]
|
309 |
+
y_classification = data['Failure']
|
310 |
+
y_regression = data['Tool wear [min]']
|
311 |
+
|
312 |
+
# Load or train models with user parameters
|
313 |
+
model_dir = './models'
|
314 |
+
os.makedirs(model_dir, exist_ok=True)
|
315 |
+
|
316 |
+
clf_pipeline_file = os.path.join(model_dir, 'clf_pipeline.pkl')
|
317 |
+
reg_pipeline_file = os.path.join(model_dir, 'reg_pipeline.pkl')
|
318 |
+
|
319 |
+
if os.path.exists(clf_pipeline_file) and os.path.exists(reg_pipeline_file):
|
320 |
+
# Load pre-trained models
|
321 |
+
clf_pipeline = joblib.load(clf_pipeline_file)
|
322 |
+
reg_pipeline = joblib.load(reg_pipeline_file)
|
323 |
+
|
324 |
+
|
325 |
+
# Data split for prediction
|
326 |
+
X_train, X_test, y_train_cls, y_test_cls = train_test_split(
|
327 |
+
X, y_classification, test_size=0.2, random_state=42, stratify=y_classification
|
328 |
+
)
|
329 |
+
_, _, y_train_reg, y_test_reg = train_test_split(
|
330 |
+
X, y_regression, test_size=0.2, random_state=42
|
331 |
+
)
|
332 |
+
|
333 |
+
else:
|
334 |
+
# Train models with user parameters
|
335 |
+
with st.spinner("Training models with selected parameters..."):
|
336 |
+
clf_pipeline, reg_pipeline = create_pipelines(params['model_params'])
|
337 |
+
|
338 |
+
# Split data for training
|
339 |
+
X_train, X_test, y_train_cls, y_test_cls = train_test_split(
|
340 |
+
X, y_classification, test_size=0.2, random_state=42, stratify=y_classification
|
341 |
+
)
|
342 |
+
_, _, y_train_reg, y_test_reg = train_test_split(
|
343 |
+
X, y_regression, test_size=0.2, random_state=42
|
344 |
+
)
|
345 |
+
|
346 |
+
# Train models
|
347 |
+
clf_pipeline.fit(X_train, y_train_cls)
|
348 |
+
reg_pipeline.fit(X_train, y_train_reg)
|
349 |
+
|
350 |
+
# Save models
|
351 |
+
joblib.dump(clf_pipeline, clf_pipeline_file)
|
352 |
+
joblib.dump(reg_pipeline, reg_pipeline_file)
|
353 |
+
st.write("Trained and saved new models to ./models folder.")
|
354 |
+
|
355 |
+
# Make predictions
|
356 |
+
y_pred_cls = clf_pipeline.predict(X_test)
|
357 |
+
y_pred_proba = clf_pipeline.predict_proba(X_test)[:, 1]
|
358 |
+
y_pred_reg = reg_pipeline.predict(X_test)
|
359 |
+
|
360 |
+
# Calculate maintenance recommendations
|
361 |
+
maintenance_due, priority, next_maintenance, estimated_days = calculate_maintenance_metrics(
|
362 |
+
y_pred_proba,
|
363 |
+
y_pred_reg,
|
364 |
+
data['Last_Maintenance'].iloc[-len(y_pred_cls):],
|
365 |
+
params['thresholds']
|
366 |
+
)
|
367 |
+
|
368 |
+
# Dashboard Layout
|
369 |
+
|
370 |
+
# 1. Equipment Health Overview
|
371 |
+
st.header("π Equipment Health Overview")
|
372 |
+
|
373 |
+
metric_cols = st.columns(4)
|
374 |
+
with metric_cols[0]:
|
375 |
+
st.metric(
|
376 |
+
"Overall Health Index",
|
377 |
+
f"{(1 - y_pred_proba.mean()):.1%}",
|
378 |
+
delta=f"{-y_pred_proba.mean():.1%}",
|
379 |
+
delta_color="inverse"
|
380 |
+
)
|
381 |
+
|
382 |
+
with metric_cols[1]:
|
383 |
+
st.metric(
|
384 |
+
"Average Failure Risk",
|
385 |
+
f"{y_pred_proba.mean():.1%}",
|
386 |
+
delta=f"{(y_pred_proba.mean() - 0.3):.1%}" if y_pred_proba.mean() > 0.3 else "Normal",
|
387 |
+
delta_color="inverse"
|
388 |
+
)
|
389 |
+
|
390 |
+
with metric_cols[2]:
|
391 |
+
st.metric(
|
392 |
+
"Equipment Requiring Maintenance",
|
393 |
+
f"{maintenance_due.sum()}",
|
394 |
+
delta=f"{maintenance_due.sum() - 10}" if maintenance_due.sum() > 10 else "Within limits"
|
395 |
+
)
|
396 |
+
|
397 |
+
with metric_cols[3]:
|
398 |
+
st.metric(
|
399 |
+
"Average Tool Wear",
|
400 |
+
f"{y_pred_reg.mean():.1f} min",
|
401 |
+
delta=f"{y_pred_reg.mean() - params['thresholds']['wear']:.1f}"
|
402 |
+
)
|
403 |
+
|
404 |
+
# 2. Interactive Analysis Tabs
|
405 |
+
tabs = st.tabs([
|
406 |
+
"π Real-time Monitoring",
|
407 |
+
"π Performance Analysis",
|
408 |
+
"π§ Maintenance Planning",
|
409 |
+
"π Historical Analysis"
|
410 |
+
])
|
411 |
+
|
412 |
+
# Tab 1: Real-time Monitoring
|
413 |
+
with tabs[0]:
|
414 |
+
# Equipment Status Summary
|
415 |
+
status_df = pd.DataFrame({
|
416 |
+
'Status': ['Healthy', 'Warning', 'Critical'],
|
417 |
+
'Count': [
|
418 |
+
(y_pred_proba < 0.3).sum(),
|
419 |
+
((y_pred_proba >= 0.3) & (y_pred_proba < 0.7)).sum(),
|
420 |
+
(y_pred_proba >= 0.7).sum()
|
421 |
+
]
|
422 |
+
})
|
423 |
+
fig = px.pie(
|
424 |
+
status_df,
|
425 |
+
values='Count',
|
426 |
+
names='Status',
|
427 |
+
title='Equipment Status Distribution',
|
428 |
+
color='Status',
|
429 |
+
color_discrete_map={
|
430 |
+
'Healthy': 'green',
|
431 |
+
'Warning': 'yellow',
|
432 |
+
'Critical': 'red'
|
433 |
+
}
|
434 |
+
)
|
435 |
+
st.plotly_chart(fig, use_container_width=True)
|
436 |
+
|
437 |
+
# Real-time Alerts
|
438 |
+
if maintenance_due.sum() > 0:
|
439 |
+
st.warning(f"β οΈ {maintenance_due.sum()} equipment units require immediate attention!")
|
440 |
+
|
441 |
+
# Interactive Equipment Explorer
|
442 |
+
st.subheader("Equipment Explorer")
|
443 |
+
selected_metric = st.selectbox(
|
444 |
+
"Select Metric to Monitor:",
|
445 |
+
options=['Temperature_Difference', 'Tool wear [min]', 'Power', 'Torque [Nm]', 'Rotational speed [rpm]']
|
446 |
+
)
|
447 |
+
|
448 |
+
time_window = st.slider(
|
449 |
+
"Time Window (last N observations)",
|
450 |
+
min_value=10,
|
451 |
+
max_value=len(data),
|
452 |
+
value=100
|
453 |
+
)
|
454 |
+
|
455 |
+
# Plot selected metric
|
456 |
+
fig = px.line(
|
457 |
+
data.tail(time_window),
|
458 |
+
y=selected_metric,
|
459 |
+
title=f'{selected_metric} - Last {time_window} Observations'
|
460 |
+
)
|
461 |
+
fig.add_hline(
|
462 |
+
y=data[selected_metric].mean(),
|
463 |
+
line_dash="dash",
|
464 |
+
annotation_text="Average"
|
465 |
+
)
|
466 |
+
st.plotly_chart(fig, use_container_width=True)
|
467 |
+
|
468 |
+
# Tab 2: Performance Analysis
|
469 |
+
with tabs[1]:
|
470 |
+
st.subheader("Model Performance Analysis")
|
471 |
+
|
472 |
+
col1, col2 = st.columns(2)
|
473 |
+
|
474 |
+
with col1:
|
475 |
+
# Classification Performance
|
476 |
+
st.markdown("### Failure Prediction Performance")
|
477 |
+
st.text("Classification Report:")
|
478 |
+
st.code(classification_report(y_test_cls, y_pred_cls))
|
479 |
+
|
480 |
+
# Precision-Recall curve
|
481 |
+
precision, recall, _ = precision_recall_curve(y_test_cls, y_pred_proba)
|
482 |
+
fig = go.Figure()
|
483 |
+
fig.add_trace(go.Scatter(
|
484 |
+
x=recall, y=precision,
|
485 |
+
mode='lines',
|
486 |
+
name='Precision-Recall curve',
|
487 |
+
fill='tozeroy'
|
488 |
+
))
|
489 |
+
fig.update_layout(
|
490 |
+
title='Precision-Recall Curve',
|
491 |
+
xaxis_title='Recall',
|
492 |
+
yaxis_title='Precision'
|
493 |
+
)
|
494 |
+
st.plotly_chart(fig, use_container_width=True)
|
495 |
+
|
496 |
+
with col2:
|
497 |
+
# Regression Performance
|
498 |
+
st.markdown("### Tool Wear Prediction Performance")
|
499 |
+
mse = mean_squared_error(y_test_reg, y_pred_reg)
|
500 |
+
rmse = np.sqrt(mse)
|
501 |
+
st.metric("Root Mean Squared Error", f"{rmse:.2f}")
|
502 |
+
|
503 |
+
# Feature Importance
|
504 |
+
feature_names = feature_columns
|
505 |
+
feature_importances = clf_pipeline.named_steps['classifier'].feature_importances_
|
506 |
+
|
507 |
+
# Ensure feature_names and feature_importances are of the same length
|
508 |
+
len_features = len(feature_names)
|
509 |
+
len_importances = len(feature_importances)
|
510 |
+
|
511 |
+
if len_features > len_importances:
|
512 |
+
feature_names = feature_names[:len_importances]
|
513 |
+
elif len_importances > len_features:
|
514 |
+
feature_importances = feature_importances[:len_features]
|
515 |
+
|
516 |
+
feature_imp = pd.DataFrame({
|
517 |
+
'Feature': feature_names,
|
518 |
+
'Importance': feature_importances
|
519 |
+
}).sort_values('Importance', ascending=True)
|
520 |
+
|
521 |
+
fig = px.bar(
|
522 |
+
feature_imp,
|
523 |
+
x='Importance',
|
524 |
+
y='Feature',
|
525 |
+
orientation='h',
|
526 |
+
title='Feature Importance Analysis'
|
527 |
+
)
|
528 |
+
st.plotly_chart(fig, use_container_width=True)
|
529 |
+
|
530 |
+
# Correlation Analysis
|
531 |
+
st.subheader("Feature Correlation Analysis")
|
532 |
+
|
533 |
+
# Calculate the correlation matrix
|
534 |
+
correlation_matrix = data[feature_columns].corr()
|
535 |
+
|
536 |
+
# Create a heatmap using plotly
|
537 |
+
correlation_fig = px.imshow(correlation_matrix,
|
538 |
+
text_auto=True,
|
539 |
+
color_continuous_scale='Viridis',
|
540 |
+
title="Feature Correlation Heatmap")
|
541 |
+
|
542 |
+
# Customize layout for better display
|
543 |
+
correlation_fig.update_layout(
|
544 |
+
width=800,
|
545 |
+
height=600,
|
546 |
+
xaxis_title="Features",
|
547 |
+
yaxis_title="Features",
|
548 |
+
xaxis={'tickangle': 45},
|
549 |
+
yaxis={'tickangle': -45}
|
550 |
+
)
|
551 |
+
|
552 |
+
# Display the correlation heatmap
|
553 |
+
st.plotly_chart(correlation_fig, use_container_width=True)
|
554 |
+
|
555 |
+
|
556 |
+
# Tab 3: Maintenance Planning
|
557 |
+
with tabs[2]:
|
558 |
+
st.subheader("Maintenance Schedule and Recommendations")
|
559 |
+
|
560 |
+
# Create maintenance schedule DataFrame
|
561 |
+
schedule_df = pd.DataFrame({
|
562 |
+
'Equipment_ID': range(1, len(maintenance_due) + 1),
|
563 |
+
'Failure_Probability': y_pred_proba,
|
564 |
+
'Tool_Wear': y_pred_reg,
|
565 |
+
'Priority': priority,
|
566 |
+
'Next_Maintenance': next_maintenance,
|
567 |
+
'Estimated_Days': estimated_days
|
568 |
+
})
|
569 |
+
|
570 |
+
# Add simulated dates
|
571 |
+
today = datetime.now()
|
572 |
+
schedule_df['Scheduled_Date'] = [
|
573 |
+
today + timedelta(days=int(d)) for d in schedule_df['Estimated_Days']
|
574 |
+
]
|
575 |
+
schedule_df['Due_Date'] = [
|
576 |
+
d + timedelta(days=7) for d in schedule_df['Scheduled_Date']
|
577 |
+
]
|
578 |
+
|
579 |
+
# Maintenance Calendar
|
580 |
+
st.markdown("### π
Maintenance Calendar")
|
581 |
+
calendar_fig = plot_maintenance_calendar(schedule_df)
|
582 |
+
st.plotly_chart(calendar_fig, use_container_width=True)
|
583 |
+
|
584 |
+
# Priority-based maintenance table
|
585 |
+
st.markdown("### π§ Priority Maintenance Tasks")
|
586 |
+
priority_df = schedule_df[schedule_df['Priority'] == 'High'].sort_values(
|
587 |
+
'Failure_Probability', ascending=False
|
588 |
+
)
|
589 |
+
|
590 |
+
if not priority_df.empty:
|
591 |
+
st.dataframe(
|
592 |
+
priority_df[['Equipment_ID', 'Failure_Probability', 'Tool_Wear', 'Next_Maintenance']],
|
593 |
+
use_container_width=True
|
594 |
+
)
|
595 |
+
else:
|
596 |
+
st.success("No high-priority maintenance tasks at the moment!")
|
597 |
+
|
598 |
+
# Maintenance Cost Analysis
|
599 |
+
st.markdown("### π° Maintenance Cost Projection")
|
600 |
+
est_cost_per_maintenance = st.number_input(
|
601 |
+
"Estimated cost per maintenance (USD):",
|
602 |
+
value=1000,
|
603 |
+
step=100
|
604 |
+
)
|
605 |
+
|
606 |
+
total_maintenance = maintenance_due.sum()
|
607 |
+
projected_cost = total_maintenance * est_cost_per_maintenance
|
608 |
+
|
609 |
+
cost_col1, cost_col2 = st.columns(2)
|
610 |
+
with cost_col1:
|
611 |
+
st.metric(
|
612 |
+
"Projected Maintenance Cost",
|
613 |
+
f"${projected_cost:,.2f}",
|
614 |
+
delta=f"${projected_cost - 10000:,.2f}" if projected_cost > 10000 else "Within budget"
|
615 |
+
)
|
616 |
+
|
617 |
+
with cost_col2:
|
618 |
+
st.metric(
|
619 |
+
"Average Cost per Equipment",
|
620 |
+
f"${projected_cost/len(maintenance_due):,.2f}"
|
621 |
+
)
|
622 |
+
|
623 |
+
# Tab 4: Historical Analysis
|
624 |
+
with tabs[3]:
|
625 |
+
st.subheader("Historical Performance Analysis")
|
626 |
+
|
627 |
+
# Time series analysis
|
628 |
+
st.markdown("### π Historical Trends")
|
629 |
+
metric_for_history = st.selectbox(
|
630 |
+
"Select metric for historical analysis:",
|
631 |
+
options=['Tool wear [min]', 'Temperature_Difference', 'Power', 'Failure']
|
632 |
+
)
|
633 |
+
|
634 |
+
fig = go.Figure()
|
635 |
+
fig.add_trace(go.Scatter(
|
636 |
+
y=data[metric_for_history],
|
637 |
+
mode='lines',
|
638 |
+
name=metric_for_history
|
639 |
+
))
|
640 |
+
|
641 |
+
# Add trend line
|
642 |
+
z = np.polyfit(range(len(data)), data[metric_for_history], 1)
|
643 |
+
p = np.poly1d(z)
|
644 |
+
fig.add_trace(go.Scatter(
|
645 |
+
y=p(range(len(data))),
|
646 |
+
mode='lines',
|
647 |
+
name='Trend',
|
648 |
+
line=dict(dash='dash')
|
649 |
+
))
|
650 |
+
|
651 |
+
st.plotly_chart(fig, use_container_width=True)
|
652 |
+
|
653 |
+
# Failure patterns analysis
|
654 |
+
st.markdown("### π Failure Patterns")
|
655 |
+
patterns = get_failure_patterns(data)
|
656 |
+
|
657 |
+
pattern_cols = st.columns(3)
|
658 |
+
for i, (pattern, count) in enumerate(patterns.items()):
|
659 |
+
with pattern_cols[i]:
|
660 |
+
st.metric(
|
661 |
+
f"Failures due to {pattern.replace('_', ' ').title()}",
|
662 |
+
count,
|
663 |
+
delta=f"{count/len(data['Failure'])*100:.1f}% of total"
|
664 |
+
)
|
665 |
+
|
666 |
+
# Footer with additional information
|
667 |
+
st.markdown("---")
|
668 |
+
st.markdown("""
|
669 |
+
### π Notes and Recommendations
|
670 |
+
- Adjust thresholds in the sidebar to customize maintenance triggers
|
671 |
+
- Regular model retraining is recommended for optimal performance
|
672 |
+
- Contact maintenance team for immediate issues
|
673 |
+
""")
|
674 |
+
|
675 |
+
# Download section for reports
|
676 |
+
if st.button("Generate Maintenance Report"):
|
677 |
+
# Create report DataFrame
|
678 |
+
report_df = pd.DataFrame({
|
679 |
+
'Equipment_ID': range(1, len(maintenance_due) + 1),
|
680 |
+
'Failure_Risk': y_pred_proba,
|
681 |
+
'Tool_Wear': y_pred_reg,
|
682 |
+
'Maintenance_Priority': priority,
|
683 |
+
'Next_Maintenance': next_maintenance,
|
684 |
+
'Days_Until_Maintenance': estimated_days
|
685 |
+
})
|
686 |
+
|
687 |
+
# Convert to CSV
|
688 |
+
csv = report_df.to_csv(index=False)
|
689 |
+
st.download_button(
|
690 |
+
label="Download Maintenance Report",
|
691 |
+
data=csv,
|
692 |
+
file_name="maintenance_report.csv",
|
693 |
+
mime="text/csv"
|
694 |
+
)
|
695 |
+
|
696 |
+
if __name__ == "__main__":
|
697 |
+
main()
|
maintenance_report.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
imbalanced_learn==0.12.4
|
2 |
+
joblib==1.3.2
|
3 |
+
matplotlib==3.7.2
|
4 |
+
numpy==1.24.3
|
5 |
+
pandas==1.5.3
|
6 |
+
plotly==5.24.1
|
7 |
+
scikit_learn==1.5.2
|
8 |
+
seaborn==0.13.2
|
9 |
+
shap==0.46.0
|
10 |
+
streamlit==1.37.0
|
train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|