import pdfplumber import streamlit as st import requests import json import redis import redis.commands.search from redis.commands.search.field import TagField, VectorField, TextField from redis.commands.search.indexDefinition import IndexDefinition, IndexType import logging from redis.commands.search.query import Query import numpy as np from typing import List, Dict, Any from utlis.constant import * from PIL import Image import google.generativeai as genai genai.configure(api_key="AIzaSyAhz9UBzkEIYI886zZRm40qqB1Kd_9Y4-0") import base64 import sqlite3 def initialize_session_state(): if "doc_ortext" not in st.session_state: st.session_state["doc_ortext"] = None if "token" not in st.session_state: st.session_state["token"] ="abcd" if "service" not in st.session_state: st.session_state["service"] = None if "use_document" not in st.session_state: st.session_state.use_document = False if "flag" not in st.session_state: st.session_state.flag = False if "embdding_model" not in st.session_state: st.session_state["embdding_model"] = None if "indexing_method" not in st.session_state: st.session_state["indexing_method"] = None if "uploaded_files" not in st.session_state: st.session_state["uploaded_files"] = None if "messages" not in st.session_state: st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}] def extract_text_from_pdf(pdf_path): text="" with pdfplumber.open(pdf_path) as pdf: for page_number, page in enumerate(pdf.pages, start=1): # Try to extract the text text+= page.extract_text(x_tolerance=2, y_tolerance=4, layout=True, x_density=5, y_density=10) return text def delete_service(token,service_slected_to_delete): for srevice_name in service_slected_to_delete: url = REMOVE_SERVICE_API # JSON payload to be sent data = { "token": token, "servicename": srevice_name } json_data = json.dumps(data) # Set the headers to specify that the content type is JSON headers = {'Content-Type': 'application/json'} # Send the POST request response = requests.delete(url, data=json_data, headers=headers) if json.loads( response.text).get("success")==True: st.success(f"{srevice_name} deleted successfully") else: st.error(f"{srevice_name} not deleted successfully") def delete_document(token, service,document_slected_to_delete): print(document_slected_to_delete) # for document_name in document_slected_to_delete: url = REMOVE_DOCUMENTS_API # JSON payload to be sent data = { "token": token, "service_name": service, "document_names":document_slected_to_delete } # Convert the dictionary to a JSON formatted string json_data = json.dumps(data) # Set the headers to specify that the content type is JSON headers = {'Content-Type': 'application/json'} # Send the POST request response = requests.delete(url, data=json_data, headers=headers) print(response) if json.loads( response.text).get("status")=="success": st.success("document(s) deleted successfully") else: st.error("document(s) not deleted successfully") def gemini_vision(file): load_image = Image.open(file) prompt= "please extract all text fromt this image" model = genai.GenerativeModel('gemini-pro-vision') response = model.generate_content([prompt, load_image]) return response.text def add_service(token,servicename): url = ADD_SERVICES_API # JSON payload to be sent data = { "token": token, "services": [ { "servicename": servicename } ] } # Convert the dictionary to a JSON formatted string json_data = json.dumps(data) # Set the headers to specify that the content type is JSON headers = {'Content-Type': 'application/json'} # Send the POST request response = requests.post(url, data=json_data, headers=headers) if json.loads( response.text).get("added_services"): st.success(f"{servicename} added successfully") else: st.error(response.text) def add_text_document(token, servicename): # Retrieve text and document name from session state document_text = st.session_state.text_area document_name = st.session_state.name_text_area.replace(" ", "_").replace("(", "_").replace(")", "_").replace("-", "_").replace(".", "_") # Encode the document text as Base64 encoded_text = base64.b64encode(document_text.encode('utf-8')).decode('utf-8') url = ADD_STORE_DOCUMENT # Prepare the JSON payload data = { "token": token, "service_name": servicename, "document_name": document_name, "file": encoded_text # Assuming the API can handle Base64 encoded text under the 'file' key } # Convert the dictionary to a JSON formatted string and send the POST request headers = {'Content-Type': 'application/json'} response = requests.post(url, data=json.dumps(data), headers=headers) status = json.loads(response.text).get("status") if status == "success": st.success(f"{document_name} uploaded successfully as text") else: st.error(f"{document_name} not uploaded successfully") def add_document(token,servicename): file = st.session_state.uploaded_files print(file) url = ADD_STORE_DOCUMENT # JSON payload to be sent document_name = file.name.replace(" ","") #document_name = document_name.replace(".pdf","") document_name = document_name.replace("(","_") document_name = document_name.replace(")","_") document_name = document_name.replace("-","_") document_name = document_name.replace(".","_") encoded_file = base64.b64encode(file.read()).decode('utf-8') data = { "token": token, "service_name": servicename, "document_name": document_name, "file":encoded_file } # Convert the dictionary to a JSON formatted string json_data = json.dumps(data) # Set the headers to specify that the content type is JSON headers = {'Content-Type': 'application/json'} # Send the POST request response = requests.post(url, data=json_data, headers=headers) document_name = file.name.replace(" ","_") if json.loads( response.text).get("status")=="success": st.success(f"{document_name} uploaded successfully") else: st.error(f"{document_name} not uploaded successfully") def get_all_keys(d): all_keys = set() def get_keys(d): for k, v in d.items(): all_keys.add(k) if isinstance(v, dict): get_keys(v) elif isinstance(v, list): for item in v: if isinstance(item, dict): get_keys(item) get_keys(d) return list(all_keys) def display_and_validate_schema(schema): if schema: schema_str = json.dumps(schema, indent=2) else: schema_str = json.dumps(DEFAULT_SCHEMA, indent=2) schema_input = st.text_area("JSON Schema", schema_str, height=300) try: schema = json.loads(schema_input) st.success("JSON schema is valid.") return schema except json.JSONDecodeError: st.error("The JSON schema is invalid. Please correct it and try again.") return None def handle_comments(comments,keys): items_per_page = 6 # Adjust this number based on your preference total_pages = (len(keys) + items_per_page - 1) // items_per_page st.write("Please provide comments for each key to assist our system:") page = st.number_input("Page", min_value=1, max_value=total_pages, step=1) start_idx = (page - 1) * items_per_page end_idx = start_idx + items_per_page for key in keys[start_idx:end_idx]: with st.expander(f"{key}"): comments[key] = st.text_input(f"{key}", value=comments.get(key,"")) # if st.button("Submit"): # st.session_state.flag=False return comments def save_schema(document_id, schema): conn = sqlite3.connect('document_cache.db') c = conn.cursor() c.execute('REPLACE INTO schemas (document_id, schema) VALUES (?, ?)', (document_id, json.dumps(schema))) conn.commit() conn.close() def get_schema(document_id): conn = sqlite3.connect('document_cache.db') c = conn.cursor() c.execute('SELECT schema FROM schemas WHERE document_id = ?', (document_id,)) result = c.fetchone() conn.close() return json.loads(result[0]) if result else None def save_comments(document_id, comments): conn = sqlite3.connect('document_cache.db') c = conn.cursor() c.execute('REPLACE INTO comments (document_id, comments) VALUES (?, ?)', (document_id, json.dumps(comments))) conn.commit() conn.close() def get_comments(document_id): conn = sqlite3.connect('document_cache.db') c = conn.cursor() c.execute('SELECT comments FROM comments WHERE document_id = ?', (document_id,)) result = c.fetchone() conn.close() return json.loads(result[0]) if result else None