import gradio as gr from diffusers import StableDiffusionPipeline,DDIMScheduler import torch # Load the model model_id = "s3nh/artwork-arcane-stable-diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") if pipe.scheduler is not None: pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) else: pipe.scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=True) # Define the image generation function def generate_image(prompt): image = pipe(prompt, num_inference_steps=30).images[0] return image # Create the Gradio interface interface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter your prompt"), outputs=gr.Image(label="Generated Image"), title="Image Generator", description="Enter a prompt to generate an image using Stable Diffusion." ) # Launch the interface interface.launch()