File size: 627 Bytes
20712aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline

app = FastAPI()

# Load sentiment analysis model
sentiment_pipeline = pipeline("sentiment-analysis")

class SentimentRequest(BaseModel):
    text: str

class SentimentResponse(BaseModel):
    label: str
    score: float

@app.get("/")
def home():
    return {"message": "Sentiment Analysis API is running!"}

@app.post("/predict/", response_model=SentimentResponse)
def predict(request: SentimentRequest):
    result = sentiment_pipeline(request.text)
    return SentimentResponse(label=result[0]['label'], score=result[0]['score'])