Spaces:
Running
Running
File size: 627 Bytes
20712aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline
app = FastAPI()
# Load sentiment analysis model
sentiment_pipeline = pipeline("sentiment-analysis")
class SentimentRequest(BaseModel):
text: str
class SentimentResponse(BaseModel):
label: str
score: float
@app.get("/")
def home():
return {"message": "Sentiment Analysis API is running!"}
@app.post("/predict/", response_model=SentimentResponse)
def predict(request: SentimentRequest):
result = sentiment_pipeline(request.text)
return SentimentResponse(label=result[0]['label'], score=result[0]['score'])
|