Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,29 +1,57 @@
|
|
| 1 |
import os
|
| 2 |
-
from fastapi import FastAPI
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import pipeline
|
|
|
|
| 5 |
|
| 6 |
# Set custom cache directory to avoid permission issues
|
| 7 |
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
| 8 |
|
| 9 |
app = FastAPI()
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
class SentimentRequest(BaseModel):
|
| 16 |
text: str
|
| 17 |
|
| 18 |
class SentimentResponse(BaseModel):
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
@app.get("/")
|
| 23 |
def home():
|
| 24 |
return {"message": "Sentiment Analysis API is running!"}
|
| 25 |
|
| 26 |
-
@app.post("/
|
| 27 |
-
def
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from fastapi import FastAPI, HTTPException
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import pipeline
|
| 5 |
+
import langdetect
|
| 6 |
|
| 7 |
# Set custom cache directory to avoid permission issues
|
| 8 |
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
+
# Load sentiment analysis models
|
| 13 |
+
multilingual_model = pipeline("sentiment-analysis", model="tabularisai/multilingual-sentiment-analysis")
|
| 14 |
+
english_model = pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english")
|
| 15 |
|
| 16 |
class SentimentRequest(BaseModel):
|
| 17 |
text: str
|
| 18 |
|
| 19 |
class SentimentResponse(BaseModel):
|
| 20 |
+
original_text: str
|
| 21 |
+
language_detected: str
|
| 22 |
+
sentiment: str
|
| 23 |
+
confidence_score: float
|
| 24 |
+
|
| 25 |
+
def detect_language(text: str) -> str:
|
| 26 |
+
try:
|
| 27 |
+
return langdetect.detect(text)
|
| 28 |
+
except:
|
| 29 |
+
return "unknown"
|
| 30 |
|
| 31 |
@app.get("/")
|
| 32 |
def home():
|
| 33 |
return {"message": "Sentiment Analysis API is running!"}
|
| 34 |
|
| 35 |
+
@app.post("/analyze/", response_model=SentimentResponse)
|
| 36 |
+
def analyze_sentiment(request: SentimentRequest):
|
| 37 |
+
if not request.text:
|
| 38 |
+
raise HTTPException(status_code=400, detail="No text provided")
|
| 39 |
+
|
| 40 |
+
text = request.text
|
| 41 |
+
language = detect_language(text)
|
| 42 |
+
|
| 43 |
+
# Choose the appropriate model based on language
|
| 44 |
+
if language == "en":
|
| 45 |
+
result = english_model(text)
|
| 46 |
+
else:
|
| 47 |
+
result = multilingual_model(text)
|
| 48 |
+
|
| 49 |
+
sentiment = result[0]["label"].lower()
|
| 50 |
+
score = result[0]["score"]
|
| 51 |
+
|
| 52 |
+
return SentimentResponse(
|
| 53 |
+
original_text=text,
|
| 54 |
+
language_detected=language,
|
| 55 |
+
sentiment=sentiment,
|
| 56 |
+
confidence_score=score
|
| 57 |
+
)
|