Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import os
|
2 |
-
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline
|
|
|
5 |
|
6 |
# Set custom cache directory to avoid permission issues
|
7 |
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
|
15 |
class SentimentRequest(BaseModel):
|
16 |
text: str
|
17 |
|
18 |
class SentimentResponse(BaseModel):
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
@app.get("/")
|
23 |
def home():
|
24 |
return {"message": "Sentiment Analysis API is running!"}
|
25 |
|
26 |
-
@app.post("/
|
27 |
-
def
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline
|
5 |
+
import langdetect
|
6 |
|
7 |
# Set custom cache directory to avoid permission issues
|
8 |
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
+
# Load sentiment analysis models
|
13 |
+
multilingual_model = pipeline("sentiment-analysis", model="tabularisai/multilingual-sentiment-analysis")
|
14 |
+
english_model = pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english")
|
15 |
|
16 |
class SentimentRequest(BaseModel):
|
17 |
text: str
|
18 |
|
19 |
class SentimentResponse(BaseModel):
|
20 |
+
original_text: str
|
21 |
+
language_detected: str
|
22 |
+
sentiment: str
|
23 |
+
confidence_score: float
|
24 |
+
|
25 |
+
def detect_language(text: str) -> str:
|
26 |
+
try:
|
27 |
+
return langdetect.detect(text)
|
28 |
+
except:
|
29 |
+
return "unknown"
|
30 |
|
31 |
@app.get("/")
|
32 |
def home():
|
33 |
return {"message": "Sentiment Analysis API is running!"}
|
34 |
|
35 |
+
@app.post("/analyze/", response_model=SentimentResponse)
|
36 |
+
def analyze_sentiment(request: SentimentRequest):
|
37 |
+
if not request.text:
|
38 |
+
raise HTTPException(status_code=400, detail="No text provided")
|
39 |
+
|
40 |
+
text = request.text
|
41 |
+
language = detect_language(text)
|
42 |
+
|
43 |
+
# Choose the appropriate model based on language
|
44 |
+
if language == "en":
|
45 |
+
result = english_model(text)
|
46 |
+
else:
|
47 |
+
result = multilingual_model(text)
|
48 |
+
|
49 |
+
sentiment = result[0]["label"].lower()
|
50 |
+
score = result[0]["score"]
|
51 |
+
|
52 |
+
return SentimentResponse(
|
53 |
+
original_text=text,
|
54 |
+
language_detected=language,
|
55 |
+
sentiment=sentiment,
|
56 |
+
confidence_score=score
|
57 |
+
)
|