File size: 7,649 Bytes
6bd6d10
 
 
 
 
 
1bb1a73
fd4d0c5
6bd6d10
fd4d0c5
6bd6d10
 
 
 
 
 
 
 
 
 
46d4994
48eb254
46d4994
6bd6d10
 
 
f681159
47fd3ad
efd8a1e
 
 
 
 
47fd3ad
6bd6d10
fd89d01
6bd6d10
 
 
 
 
 
 
 
 
fd4d0c5
6bd6d10
699acc0
6bd6d10
47fd3ad
6bd6d10
fd4d0c5
6bd6d10
699acc0
26cb597
47fd3ad
6bd6d10
fd4d0c5
6bd6d10
fd4d0c5
6bd6d10
 
57ff1d6
6bd6d10
 
fd4d0c5
6bd6d10
 
46d4994
1bb1a73
 
 
 
 
6bd6d10
1bb1a73
6bd6d10
1fcdf99
 
6bd6d10
 
 
 
6e29ffb
6bd6d10
6e29ffb
6bd6d10
 
 
 
 
 
 
 
 
 
 
 
 
 
fd89d01
6bd6d10
 
 
2008ddc
6bd6d10
 
 
 
 
 
48eb254
6bd6d10
c9aafe6
 
6bd6d10
 
 
 
 
 
fd89d01
6bd6d10
 
 
 
 
fd89d01
48eb254
fd89d01
 
ba26b8e
 
 
 
 
 
 
 
 
 
 
de7ee14
ba26b8e
f681159
ba26b8e
 
 
 
fd89d01
ba26b8e
fd89d01
 
 
ba26b8e
 
 
 
 
 
 
 
 
 
 
de7ee14
ba26b8e
f681159
ba26b8e
 
 
 
fd89d01
ba26b8e
fd89d01
6bd6d10
 
48eb254
1bb1a73
 
 
 
 
 
 
fd89d01
 
1bb1a73
fd89d01
8ea7cb4
fd89d01
6bd6d10
 
fd89d01
48eb254
7936edc
6bd6d10
7936edc
6bd6d10
 
 
fd4d0c5
fb29f30
fd4d0c5
6bd6d10
1dda4f2
5080028
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

from flask import Flask, request, render_template
from twilio.twiml.voice_response import VoiceResponse, Gather
import openai
import csv
import os
import requests
from simple_salesforce import Salesforce
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain, ConversationChain
from langchain import PromptTemplate
from langchain import HuggingFaceHub
from langchain.chains.conversation.memory import (ConversationBufferMemory, 
                                                  ConversationSummaryMemory, 
                                                  ConversationBufferWindowMemory,
                                                  ConversationKGMemory,ConversationSummaryBufferMemory)

app = Flask(__name__)

os.environ['OPENAI_API_KEY'] = os.environ.get("OPENAI_KEY")
openai.api_key = os.environ.get("OPENAI_KEY")

# Set up the LangChain

template = """Answer the question based on the context below.
Context: You are Lisa, a loyal helpful service agent, appointed for SuperFoods Petcare Company.
Your goal is to ask one question at a time and provide a friendly conversational responses to the customer.
- For Complaints: Ask the product or brnad name they have purchased and when they bought it.
- Next, ask the customer if he wants a refund or return the product.
- For Returns: Tell him about the 10-day return policy, after which it's non-returnable. 
- For Refunds: Ask about the mode of refund he wants and clarify him the refunds will happen within 2-3 business days. Do not ask for Bank Details from the customer.
For all complaints, a case for will be created, and the caller will be notified over his registered Email or WhatsApp.
Do not answer anything outside your role or context, and apologize for any unknown questions. 

Past Conversations: {chat_history}
Human: {input}
AI: 

"""

prompt = PromptTemplate(
    input_variables=["chat_history", "input"],
    template=template
)

llm35 = ChatOpenAI(
    temperature=0, 
    model_name='gpt-3.5-turbo',
    max_tokens=256
)

llm30 = OpenAI(
    temperature=0,     
    max_tokens=256,
    frequency_penalty=0
)

memory = ConversationBufferMemory(memory_key="chat_history")

conversations = ConversationChain(
    prompt=prompt,
    llm=llm30,
    memory=memory,
    verbose=False
)

# Set up the Salesforce API

#sf_user = os.environ.get("SF_USER")
#sf_pwd = os.environ.get("SF_PWD")
#sf_token = os.environ.get("SF_TOKEN")
#sf_instance = os.environ.get("SF_INSTANCE")
#sf = Salesforce(username=sf_user, password=sf_pwd, security_token=sf_token,instance_url=sf_instance)
#print(sf.headers)
#print("Successfully Connected to Salesforce")

conversation_id = ''

# Define a function to handle incoming calls
def handle_incoming_call():
    response = VoiceResponse()
    gather = Gather(input='speech', speechTimeout='auto', action='/process_input')
    gather.say("Welcome to the SuperFood Customer Services !")
    gather.pause(length=1)
    gather.say("Hi, I am Lisa, from customer desk")
    gather.pause(length=0)
    gather.say("May i know who i am talking to?")
    response.append(gather)
    return str(response)

# Define a route to handle incoming calls
@app.route("/incoming_call", methods=["POST"])
def incoming_call():
    return handle_incoming_call()

# Define a route to handle user input
@app.route('/process_input', methods=['POST'])
def process_input():
    user_input = request.form['SpeechResult']
    print("Rob : " +user_input)
    conversation_id = request.form['CallSid']
    #print("Conversation Id: " + conversation_id)

    if user_input.lower() in ['thank you', 'thanks.', 'bye.', 'goodbye.','no thanks.','no, thank you.','i m good.','no, i m good.','same to you.','no, thanks.','thank you.']:
        response = VoiceResponse()
        response.say("Thank you for using our service. Goodbye!")
        
        response.hangup()
        print("Hanged-up")
        
        create_case(conversations.memory.buffer,conversation_id)
        
        memory.clear()
        
        print("Case created successfully !!")
        
    else:       
        response = VoiceResponse()
        ai_response=conversations.predict(input=user_input)
        response.say(ai_response)
        print("Bot: " + ai_response)
        gather = Gather(input='speech', speechTimeout='auto', action='/process_input')
        response.append(gather)
   
    return str(response)

# For Case Summary and Subject


def get_case_summary(conv_detail):
    #chatresponse_desc = openai.ChatCompletion.create(
    #model="gpt-3.5-turbo",
    #temperature=0,
    #max_tokens=128,
    #messages=[
    #    {"role": "system", "content": "You are an Text Summarizer."},
    #    {"role": "user", "content": "You need to summarise the conversation between an agent and customer mentioned below. Remember to keep the Product Name, Customer Tone and other key elements from the convsersation"},
    #    {"role": "user", "content": conv_detail}
    #]
    #)
    #case_desc = chatresponse_desc.choices[0].message.content
    chatresponse_desc = openai.Completion.create( 
    model = 'text-davinci-003',
    prompt = 'You need to summarise the problem as told by the customer. Remember to keep the Product Name and other key points discussed from the conversation.Here is the conversation between service agent and the customer: ' + conv_detail,
    temperature = 0,
    top_p =1,
    best_of=1,
    max_tokens=256
    )
    case_desc = chatresponse_desc.choices[0].text.strip()
    return case_desc

def get_case_subject(conv_detail):     
    #chatresponse_subj = openai.ChatCompletion.create(
    #model="gpt-3.5-turbo",
    #temperature=0,
    #max_tokens=32,
    #messages=[
    #    {"role": "system", "content": "You are an Text Summarizer."},
    #    {"role": "user", "content": "You need to summarise the conversation between an agent and customer in 15 words mentioned below for case subject."},
    #    {"role": "user", "content": conv_detail}
    #]
    #)
    #case_subj = chatresponse_subj.choices[0].message.content
    chatresponse_subj = openai.Completion.create( 
    model = 'text-davinci-003',
    prompt = 'Summarise the conversation between an agent and customer in 10 words mentioned below for Case Subject. Here is the conversation: ' + conv_detail,
    temperature = 0,
    top_p =1,
    best_of=1,
    max_tokens=256
    )
    case_subj = chatresponse_subj.choices[0].text.strip()
    return case_subj

# Define a function to create a case record in Salesforce
def create_case(conv_hist,conv_id):
    sf_user = os.environ.get("SF_USER")
    sf_pwd = os.environ.get("SF_PWD")
    sf_token = os.environ.get("SF_TOKEN")
    sf_instance = os.environ.get("SF_INSTANCE")
    session = requests.Session()
    sf = Salesforce(username=sf_user, password=sf_pwd, security_token=sf_token,instance_url=sf_instance,session=session)
    
    desc = get_case_summary(conv_hist)
    subj = get_case_subject(conv_hist)
    
    case_data = {
            'Subject': 'Voice Bot Case: ' + subj ,
            'Description': desc,
            'Status': 'New',
            'Origin': 'Voice Bot',
            'Voice_Call_Conversation__c': conv_hist ,
            'Voice_Call_Id__c': conv_id,
            'ContactId': '003B000000NLHQ1IAP'
        }   
    sf.Case.create(case_data)        
        

@app.route('/')
def index():
    return """Flask Server running with Twilio Voice & ChatGPT integrated with Salesforce for Case Creation. Call the registered Twilio # to talk to the AI Voice Bot."""

if __name__ == '__main__':
    app.run(debug=False,host='0.0.0.0',port=5050)
    uvicorn.run(app,host='0.0.0.0', port=5050)