File size: 631 Bytes
9f8e44a
bb76e7b
9f8e44a
 
bb76e7b
 
 
3a01999
 
2260c65
bb76e7b
 
 
 
3a01999
 
 
 
bb76e7b
46d7acf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import gradio as gr
from transformers import pipeline


summarizer = pipeline('summarization', model='Eitanli/resume_label_summary_model')


def predict(text, min_length, max_length):
    summary = summarizer(text, min_length=min_length, max_length=max_length)
    return summary[0]['summary_text']


iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Textbox(label="Paste resume here"),
        gr.Slider(2, 20, step=1.0, value=2, label="min_length", info="Choose between 2 and 20"),
        gr.Slider(10, 30, step=1.0, value=10, label="max_length", info="Choose between 10 and 30")],
    outputs="text")
iface.launch()