File size: 22,718 Bytes
bdffd5c
 
 
05a8b3a
8260884
 
05a8b3a
8260884
bdffd5c
e1e62e1
bd56d11
3ffd86f
016ea8f
aca6259
5248493
 
2c973dd
05a8b3a
 
9d8c1cd
ea13192
2c973dd
 
 
3ffd86f
5248493
3ffd86f
0e35be5
3ffd86f
a87a04f
 
635f794
aca6259
3ffd86f
aca6259
 
d17b8ed
05a8b3a
aca6259
05a8b3a
aca6259
 
 
8260884
05a8b3a
 
 
d17b8ed
3ffd86f
 
bd56d11
 
 
0e35be5
bd56d11
 
3ffd86f
67be25f
 
 
bd56d11
e449567
 
0e35be5
 
3ffd86f
b926bd9
 
 
 
 
a0dd4b1
0e35be5
 
 
635f794
0e35be5
 
 
 
635f794
0e35be5
a703ba0
0e35be5
 
635f794
0e35be5
49b618f
bd56d11
ca02ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc8b6c
3ffd86f
 
b00eab7
7f75e6a
05a8b3a
3ffd86f
 
 
a703ba0
 
aca6259
 
4cc8b6c
05a8b3a
 
ea13192
aca6259
 
 
 
 
 
 
 
e0fdd09
4658fdf
 
 
e0fdd09
05a8b3a
 
aca6259
ca02ad4
05a8b3a
 
 
 
 
 
4658fdf
05a8b3a
a703ba0
aca6259
 
8260884
aca6259
05a8b3a
c5d33a2
4658fdf
05a8b3a
 
 
 
 
 
 
 
97bdf8a
05a8b3a
 
 
 
 
 
 
 
d17b8ed
 
 
 
05a8b3a
d17b8ed
05a8b3a
 
 
 
 
 
 
 
 
 
 
 
 
7d97b34
05a8b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
8260884
d17b8ed
05a8b3a
97bdf8a
05a8b3a
e255f2c
97bdf8a
 
 
 
 
 
 
0075b03
97bdf8a
 
 
 
 
2c973dd
97bdf8a
da06c9f
97bdf8a
 
 
 
 
e255f2c
97bdf8a
d17b8ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c973dd
d17b8ed
 
2c973dd
 
bf71485
d17b8ed
2c973dd
 
 
 
 
 
 
d17b8ed
 
 
 
2c973dd
 
 
d17b8ed
 
 
2c973dd
d17b8ed
e449567
e1e62e1
635f794
 
 
0e35be5
635f794
0e35be5
635f794
 
 
 
0aa5e3b
8acde4f
 
9fff002
 
635f794
0e35be5
635f794
0e35be5
635f794
 
8260884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ffd86f
 
 
bd56d11
 
6231060
4cc8b6c
6231060
42d6456
6231060
 
 
3ffd86f
42d6456
6231060
 
cd0938d
 
 
 
aca6259
6231060
3ffd86f
 
4cc8b6c
 
 
 
 
 
 
a709b3b
3fb57b9
3ffd86f
aca6259
3ffd86f
cca54b2
3ffd86f
aca6259
05a8b3a
 
 
 
 
 
42d6456
24781ef
bc4ea04
05a8b3a
f0507d1
4cc8b6c
4658fdf
 
 
f0507d1
ea13192
05a8b3a
cca54b2
 
 
a709b3b
 
aca6259
a709b3b
aca6259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7268ce
aca6259
 
 
 
 
a709b3b
aca6259
8260884
a709b3b
 
d17b8ed
 
 
a709b3b
ea13192
aca6259
a709b3b
 
 
 
 
ea13192
aca6259
a709b3b
 
 
 
aca6259
 
 
 
 
 
 
 
a709b3b
 
 
 
 
 
 
 
 
 
3ffd86f
d17b8ed
a87a04f
 
 
 
 
 
d17b8ed
a87a04f
 
 
d17b8ed
 
3ffd86f
 
 
 
 
 
a87a04f
 
2c973dd
05a8b3a
8260884
05a8b3a
 
 
 
 
 
8260884
05a8b3a
8260884
05a8b3a
 
8260884
05a8b3a
 
8260884
05a8b3a
 
8260884
 
 
ea13192
3ffd86f
 
ca02ad4
 
 
 
 
 
 
 
 
 
 
9872fa5
 
 
 
 
 
 
 
 
 
2c973dd
 
 
05a8b3a
 
 
2c973dd
 
 
 
 
 
 
d17b8ed
2c973dd
 
 
 
 
d17b8ed
2c973dd
 
 
 
 
 
 
 
 
 
 
 
 
 
ea13192
54b9181
1242b1d
fff1fe9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
from climateqa.engine.embeddings import get_embeddings_function
embeddings_function = get_embeddings_function()

from climateqa.knowledge.openalex import OpenAlex
from sentence_transformers import CrossEncoder

# reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
oa = OpenAlex()

import gradio as gr
import pandas as pd
import numpy as np
import os
import time
import re
import json

from gradio import ChatMessage

# from gradio_modal import Modal

from io import BytesIO
import base64

from datetime import datetime
from azure.storage.fileshare import ShareServiceClient

from utils import create_user_id

from gradio_modal import Modal



# ClimateQ&A imports
from climateqa.engine.llm import get_llm
from climateqa.engine.vectorstore import get_pinecone_vectorstore
# from climateqa.knowledge.retriever import ClimateQARetriever
from climateqa.engine.reranker import get_reranker
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.chains.prompts import audience_prompts
from climateqa.sample_questions import QUESTIONS
from climateqa.constants import POSSIBLE_REPORTS
from climateqa.utils import get_image_from_azure_blob_storage
from climateqa.engine.keywords import make_keywords_chain
# from climateqa.engine.chains.answer_rag import make_rag_papers_chain
from climateqa.engine.graph import make_graph_agent,display_graph

from front.utils import make_html_source, make_html_figure_sources,parse_output_llm_with_sources,serialize_docs,make_toolbox

# Load environment variables in local mode
try:
    from dotenv import load_dotenv
    load_dotenv()
except Exception as e:
    pass

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)



init_prompt = ""

system_template = {
    "role": "system",
    "content": init_prompt,
}

account_key = os.environ["BLOB_ACCOUNT_KEY"]
if len(account_key) == 86:
    account_key += "=="

credential = {
    "account_key": account_key,
    "account_name": os.environ["BLOB_ACCOUNT_NAME"],
}

account_url = os.environ["BLOB_ACCOUNT_URL"]
file_share_name = "climateqa"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)

user_id = create_user_id()


CITATION_LABEL = "BibTeX citation for ClimateQ&A"
CITATION_TEXT = r"""@misc{climateqa,
    author={Théo Alves Da Costa, Timothée Bohe},
    title={ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
    year={2024},
    howpublished= {\url{https://climateqa.com}},
}
@software{climateqa,
    author = {Théo Alves Da Costa, Timothée Bohe},
    publisher = {ClimateQ&A},
    title = {ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
}
"""



# Create vectorstore and retriever
vectorstore = get_pinecone_vectorstore(embeddings_function)
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
reranker = get_reranker("large")
agent = make_graph_agent(llm,vectorstore,reranker)




async def chat(query,history,audience,sources,reports):
    """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
    (messages in gradio format, messages in langchain format, source documents)"""

    date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f">> NEW QUESTION ({date_now}) : {query}")

    if audience == "Children":
        audience_prompt = audience_prompts["children"]
    elif audience == "General public":
        audience_prompt = audience_prompts["general"]
    elif audience == "Experts":
        audience_prompt = audience_prompts["experts"]
    else:
        audience_prompt = audience_prompts["experts"]

    # Prepare default values
    if len(sources) == 0:
        sources = ["IPCC"]

    # if len(reports) == 0: # TODO 
    reports = []
    
    inputs = {"user_input": query,"audience": audience_prompt,"sources_input":sources}
    result = agent.astream_events(inputs,version = "v1") 
    
    # path_reformulation = "/logs/reformulation/final_output"
    # path_keywords = "/logs/keywords/final_output"
    # path_retriever = "/logs/find_documents/final_output"
    # path_answer = "/logs/answer/streamed_output_str/-"

    docs = []
    docs_html = ""
    output_query = ""
    output_language = ""
    output_keywords = ""
    gallery = []
    start_streaming = False
    figures = '<div class="figures-container"><p></p> </div>'

    steps_display = {
        "categorize_intent":("🔄️ Analyzing user message",True),
        "transform_query":("🔄️ Thinking step by step to answer the question",True),
        "retrieve_documents":("🔄️ Searching in the knowledge base",False),
    }
    
    used_documents = []
    answer_message_content = ""
    try:
        async for event in result:
            if "langgraph_node" in event["metadata"]:
                node = event["metadata"]["langgraph_node"]

                if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
                    try:
                        docs = event["data"]["output"]["documents"]
                        docs_html = []
                        textual_docs = [d for d in docs if d.metadata["chunk_type"] == "text"]
                        for i, d in enumerate(textual_docs, 1):
                            if d.metadata["chunk_type"] == "text":
                                docs_html.append(make_html_source(d, i))
                        
                        used_documents = used_documents + [f"{d.metadata['short_name']} - {d.metadata['name']}" for d in docs]
                        history[-1].content = "Adding sources :\n\n - " + "\n - ".join(np.unique(used_documents))
                            
                        docs_html = "".join(docs_html)
                        
                    except Exception as e:
                        print(f"Error getting documents: {e}")
                        print(event)
 
                elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
                    event_description,display_output = steps_display[node]
                    if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
                        history.append(ChatMessage(role="assistant", content = "", metadata={'title' :event_description}))
 
                elif event["name"] != "transform_query" and event["event"] == "on_chat_model_stream" and node in ["answer_rag", "answer_search","answer_chitchat"]:# if streaming answer
                    if start_streaming == False:
                        start_streaming = True
                        history.append(ChatMessage(role="assistant", content = ""))
                    answer_message_content +=  event["data"]["chunk"].content
                    answer_message_content = parse_output_llm_with_sources(answer_message_content)
                    history[-1] = ChatMessage(role="assistant", content = answer_message_content)
                    # history.append(ChatMessage(role="assistant", content = new_message_content))

                if event["name"] == "transform_query" and event["event"] =="on_chain_end":
                    if hasattr(history[-1],"content"):
                        history[-1].content += "Decompose question into sub-questions: \n\n - " + "\n - ".join([q["question"] for q in event["data"]["output"]["remaining_questions"]])
                        
                if event["name"] == "categorize_intent" and event["event"] == "on_chain_start":
                    print("X")
            
            yield history,docs_html,output_query,output_language,gallery, figures #,output_query,output_keywords
 
    except Exception as e:
        print(event, "has failed")
        raise gr.Error(f"{e}")


    try:
        # Log answer on Azure Blob Storage
        if os.getenv("GRADIO_ENV") != "local":
            timestamp = str(datetime.now().timestamp())
            file = timestamp + ".json"
            prompt = history[1]["content"]
            logs = {
                "user_id": str(user_id),
                "prompt": prompt,
                "query": prompt,
                "question":output_query,
                "sources":sources,
                "docs":serialize_docs(docs),
                "answer": history[-1].content,
                "time": timestamp,
            }
            log_on_azure(file, logs, share_client)
    except Exception as e:
        print(f"Error logging on Azure Blob Storage: {e}")
        raise gr.Error(f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)")



        
    # image_dict = {}
    # for i,doc in enumerate(docs):
        
    #     if doc.metadata["chunk_type"] == "image":
    #         try:
    #             key = f"Image {i+1}"
    #             image_path = doc.metadata["image_path"].split("documents/")[1]
    #             img = get_image_from_azure_blob_storage(image_path)

    #             # Convert the image to a byte buffer
    #             buffered = BytesIO()
    #             img.save(buffered, format="PNG")
    #             img_str = base64.b64encode(buffered.getvalue()).decode()

    #             # Embedding the base64 string in Markdown
    #             markdown_image = f"![Alt text](data:image/png;base64,{img_str})"
    #             image_dict[key] = {"img":img,"md":markdown_image,"short_name": doc.metadata["short_name"],"figure_code":doc.metadata["figure_code"],"caption":doc.page_content,"key":key,"figure_code":doc.metadata["figure_code"], "img_str" : img_str}
    #         except Exception as e:
    #             print(f"Skipped adding image {i} because of {e}")

    # if len(image_dict) > 0:

    #     gallery = [x["img"] for x in list(image_dict.values())]
    #     img = list(image_dict.values())[0]
    #     img_md = img["md"]
    #     img_caption = img["caption"]
    #     img_code = img["figure_code"]
    #     if img_code != "N/A":
    #         img_name = f"{img['key']} - {img['figure_code']}"
    #     else:
    #         img_name = f"{img['key']}"

    #     history.append(ChatMessage(role="assistant", content = f"\n\n{img_md}\n<p class='chatbot-caption'><b>{img_name}</b> - {img_caption}</p>"))
        
    docs_figures = [d for d in docs if d.metadata["chunk_type"] == "image"]
    for i, doc in enumerate(docs_figures):
        if doc.metadata["chunk_type"] == "image":
            try:
                key = f"Image {i+1}"

                image_path = doc.metadata["image_path"].split("documents/")[1]
                img = get_image_from_azure_blob_storage(image_path)

                # Convert the image to a byte buffer
                buffered = BytesIO()
                img.save(buffered, format="PNG")
                img_str = base64.b64encode(buffered.getvalue()).decode()
                
                figures = figures + make_html_figure_sources(doc, i, img_str)  
                
                gallery.append(img)

            except Exception as e:
                print(f"Skipped adding image {i} because of {e}")
   
        
    

    yield history,docs_html,output_query,output_language,gallery, figures#,output_query,output_keywords


def save_feedback(feed: str, user_id):
    if len(feed) > 1:
        timestamp = str(datetime.now().timestamp())
        file = user_id + timestamp + ".json"
        logs = {
            "user_id": user_id,
            "feedback": feed,
            "time": timestamp,
        }
        log_on_azure(file, logs, share_client)
        return "Feedback submitted, thank you!"




def log_on_azure(file, logs, share_client):
    logs = json.dumps(logs)
    file_client = share_client.get_file_client(file)
    file_client.upload_file(logs)


def generate_keywords(query):
    chain = make_keywords_chain(llm)
    keywords = chain.invoke(query)
    keywords = " AND ".join(keywords["keywords"])
    return keywords



papers_cols_widths = {
    "doc":50,
    "id":100,
    "title":300,
    "doi":100,
    "publication_year":100,
    "abstract":500,
    "rerank_score":100,
    "is_oa":50,
}

papers_cols = list(papers_cols_widths.keys())
papers_cols_widths = list(papers_cols_widths.values())


# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------


init_prompt = """
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.

❓ How to use
- **Language**: You can ask me your questions in any language. 
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.

⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*

🛈 Information
Please note that we log your questions for meta-analysis purposes, so avoid sharing any sensitive or personal information.


What do you want to learn ?
"""


def vote(data: gr.LikeData):
    if data.liked:
        print(data.value)
    else:
        print(data)



with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme,elem_id = "main-component") as demo:

    with gr.Tab("ClimateQ&A"):

        with gr.Row(elem_id="chatbot-row"):
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(
                    value = [ChatMessage(role="assistant", content=init_prompt)],
                    type = "messages",
                    show_copy_button=True,
                    show_label = False,
                    elem_id="chatbot",
                    layout = "panel",
                    avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
                    max_height="80vh",
                    height="100vh"
                )
                
                # bot.like(vote,None,None)



                with gr.Row(elem_id = "input-message"):
                    textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
                 

            with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):


                with gr.Tabs() as tabs:
                    with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
                                        
                        examples_hidden = gr.Textbox(visible = False)
                        first_key = list(QUESTIONS.keys())[0]
                        dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")

                        samples = []
                        for i,key in enumerate(QUESTIONS.keys()):

                            examples_visible = True if i == 0 else False

                            with gr.Row(visible = examples_visible) as group_examples:

                                examples_questions = gr.Examples(
                                    QUESTIONS[key],
                                    [examples_hidden],
                                    examples_per_page=8,
                                    run_on_click=False,
                                    elem_id=f"examples{i}",
                                    api_name=f"examples{i}",
                                    # label = "Click on the example question or enter your own",
                                    # cache_examples=True,
                                )
                            
                            samples.append(group_examples)


                    with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
                        sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
                        docs_textbox = gr.State("")
                        

                        

                    # with Modal(visible = False) as config_modal:
                    with gr.Tab("Configuration",elem_id = "tab-config",id = 2):

                        gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")


                        dropdown_sources = gr.CheckboxGroup(
                            ["IPCC", "IPBES","IPOS"],
                            label="Select source",
                            value=["IPCC"],
                            interactive=True,
                        )

                        dropdown_reports = gr.Dropdown(
                            POSSIBLE_REPORTS,
                            label="Or select specific reports",
                            multiselect=True,
                            value=None,
                            interactive=True,
                        )

                        dropdown_audience = gr.Dropdown(
                            ["Children","General public","Experts"],
                            label="Select audience",
                            value="Experts",
                            interactive=True,
                        )

                        output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
                        output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)


                    with gr.Tab("Figures",elem_id = "tab-figures",id = 3):
                        with Modal(visible=False, elem_id="modal_figure_galery") as modal:
                            gallery_component = gr.Gallery(object_fit='scale-down',elem_id="gallery-component", height="80vh")
                            
                        show_full_size_figures = gr.Button("Show figures in full size",elem_id="show-figures",interactive=True)    
                        show_full_size_figures.click(lambda : Modal(visible=True),None,modal)

                        figures_cards = gr.HTML(show_label=False, elem_id="sources-figures")
                        





#---------------------------------------------------------------------------------------
# OTHER TABS
#---------------------------------------------------------------------------------------


    # with gr.Tab("Figures",elem_id = "tab-images",elem_classes = "max-height other-tabs"):
    #     gallery_component = gr.Gallery(object_fit='cover')

    # with gr.Tab("Papers (beta)",elem_id = "tab-papers",elem_classes = "max-height other-tabs"):

    #     with gr.Row():
    #         with gr.Column(scale=1):
    #             query_papers = gr.Textbox(placeholder="Question",show_label=False,lines = 1,interactive = True,elem_id="query-papers")
    #             keywords_papers = gr.Textbox(placeholder="Keywords",show_label=False,lines = 1,interactive = True,elem_id="keywords-papers")
    #             after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers")
    #             search_papers = gr.Button("Search",elem_id="search-papers",interactive=True)

    #         with gr.Column(scale=7):

    #             with gr.Tab("Summary",elem_id="papers-summary-tab"):
    #                 papers_summary = gr.Markdown(visible=True,elem_id="papers-summary")

    #             with gr.Tab("Relevant papers",elem_id="papers-results-tab"):
    #                 papers_dataframe = gr.Dataframe(visible=True,elem_id="papers-table",headers = papers_cols)

    #             with gr.Tab("Citations network",elem_id="papers-network-tab"):
    #                 citations_network = gr.HTML(visible=True,elem_id="papers-citations-network")


            
    with gr.Tab("About",elem_classes = "max-height other-tabs"):
        with gr.Row():
            with gr.Column(scale=1):




                gr.Markdown("""
### More info
- See more info at [https://climateqa.com](https://climateqa.com/docs/intro/)
- Feedbacks on this [form](https://forms.office.com/e/1Yzgxm6jbp)
                            
### Citation
""")
                with gr.Accordion(CITATION_LABEL,elem_id="citation", open = False,):
                    # # Display citation label and text)
                    gr.Textbox(
                        value=CITATION_TEXT,
                        label="",
                        interactive=False,
                        show_copy_button=True,
                        lines=len(CITATION_TEXT.split('\n')),
                    )



    def start_chat(query,history):
        # history = history + [(query,None)]
        # history = [tuple(x) for x in history]
        history = history + [ChatMessage(role="user", content=query)]
        return (gr.update(interactive = False),gr.update(selected=1),history)
    
    def finish_chat():
        return (gr.update(interactive = True,value = ""))

    (textbox
        .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
        .then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery_component,figures_cards],concurrency_limit = 8,api_name = "chat_textbox")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
    )

    (examples_hidden
        .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
        .then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery_component, figures_cards],concurrency_limit = 8,api_name = "chat_examples")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
    )


    def change_sample_questions(key):
        index = list(QUESTIONS.keys()).index(key)
        visible_bools = [False] * len(samples)
        visible_bools[index] = True
        return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]



    dropdown_samples.change(change_sample_questions,dropdown_samples,samples)


    demo.queue()

demo.launch(ssr_mode=False)