File size: 12,112 Bytes
05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 16522e2 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 16522e2 52bc1cc 16522e2 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc 05a8b3a 52bc1cc ca02ad4 05a8b3a 52bc1cc 05a8b3a 28684d8 05a8b3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
from langchain_core.pydantic_v1 import BaseModel, Field
from typing import List
from typing import Literal
from langchain.prompts import ChatPromptTemplate
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
# OLD QUERY ANALYSIS
# keywords: List[str] = Field(
# description="""
# Extract the keywords from the user query to feed a search engine as a list
# Maximum 3 keywords
# Examples:
# - "What is the impact of deep sea mining ?" -> deep sea mining
# - "How will El Nino be impacted by climate change" -> el nino;climate change
# - "Is climate change a hoax" -> climate change;hoax
# """
# )
# alternative_queries: List[str] = Field(
# description="""
# Generate alternative search questions from the user query to feed a search engine
# """
# )
# step_back_question: str = Field(
# description="""
# You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer.
# This questions should help you get more context and information about the user query
# """
# )
# - OpenAlex is for any other questions that are not in the previous categories but could be found in the scientific litterature
#
# topics: List[Literal[
# "Climate change",
# "Biodiversity",
# "Energy",
# "Decarbonization",
# "Climate science",
# "Nature",
# "Climate policy and justice",
# "Oceans",
# "Deep sea mining",
# "ESG and regulations",
# "CSRD",
# ]] = Field(
# ...,
# description = """
# Choose the topics that are most relevant to the user query, ex: Climate change, Energy, Biodiversity, ...
# """,
# )
# date: str = Field(description="The date or period mentioned, ex: 2050, between 2020 and 2050")
# location:Location
ROUTING_INDEX = {
"IPx":["IPCC", "IPBES", "IPOS"],
"POC": ["AcclimaTerra", "PCAET","Biodiv"],
"OpenAlex":["OpenAlex"],
}
POSSIBLE_SOURCES = [y for values in ROUTING_INDEX.values() for y in values]
# Prompt from the original paper https://arxiv.org/pdf/2305.14283
# Query Rewriting for Retrieval-Augmented Large Language Models
class QueryDecomposition(BaseModel):
"""
Decompose the user query into smaller parts to think step by step to answer this question
Act as a simple planning agent
"""
questions: List[str] = Field(
description="""
Think step by step to answer this question, and provide one or several search engine questions in the provided language for knowledge that you need.
Suppose that the user is looking for information about climate change, energy, biodiversity, nature, and everything we can find the IPCC reports and scientific literature
- If it's already a standalone and explicit question, just return the reformulated question for the search engine
- If you need to decompose the question, output a list of maximum 2 to 3 questions
"""
)
class Location(BaseModel):
country:str = Field(...,description="The country if directly mentioned or inferred from the location (cities, regions, adresses), ex: France, USA, ...")
location:str = Field(...,description="The specific place if mentioned (cities, regions, addresses), ex: Marseille, New York, Wisconsin, ...")
class QueryTranslation(BaseModel):
"""Translate the query into a given language"""
question : str = Field(
description="""
Translate the questions into the given language
If the question is alrealdy in the given language, just return the same question
""",
)
class QueryAnalysis(BaseModel):
"""
Analyze the user query to extract the relevant sources
Deprecated:
Analyzing the user query to extract topics, sources and date
Also do query expansion to get alternative search queries
Also provide simple keywords to feed a search engine
"""
sources: List[Literal["IPCC", "IPBES", "IPOS", "AcclimaTerra", "PCAET","Biodiv"]] = Field( #,"OpenAlex"]] = Field(
...,
description="""
Given a user question choose which documents would be most relevant for answering their question,
- IPCC is for questions about climate change, energy, impacts, and everything we can find the IPCC reports
- IPBES is for questions about biodiversity and nature
- IPOS is for questions about the ocean and deep sea mining
- AcclimaTerra is for questions about any specific place in, or close to, the french region "Nouvelle-Aquitaine"
- PCAET is the Plan Climat Eneregie Territorial for the city of Paris
- Biodiv is the Biodiversity plan for the city of Paris
""",
)
def make_query_decomposition_chain(llm):
"""Chain to decompose a query into smaller parts to think step by step to answer this question
Args:
llm (_type_): _description_
Returns:
_type_: _description_
"""
openai_functions = [convert_to_openai_function(QueryDecomposition)]
llm_with_functions = llm.bind(functions = openai_functions,function_call={"name":"QueryDecomposition"})
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant, you will analyze, translate and reformulate the user input message using the function provided"),
("user", "input: {input}")
])
chain = prompt | llm_with_functions | JsonOutputFunctionsParser()
return chain
def make_query_analysis_chain(llm):
"""Analyze the user query to extract the relevant sources"""
openai_functions = [convert_to_openai_function(QueryAnalysis)]
llm_with_functions = llm.bind(functions = openai_functions,function_call={"name":"QueryAnalysis"})
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant, you will analyze the user input message using the function provided"),
("user", "input: {input}")
])
chain = prompt | llm_with_functions | JsonOutputFunctionsParser()
return chain
def make_query_translation_chain(llm):
"""Analyze the user query to extract the relevant sources"""
openai_functions = [convert_to_openai_function(QueryTranslation)]
llm_with_functions = llm.bind(functions = openai_functions,function_call={"name":"QueryTranslation"})
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant, translate the question into {language}"),
("user", "input: {input}")
])
chain = prompt | llm_with_functions | JsonOutputFunctionsParser()
return chain
def group_by_sources_types(sources):
sources_types = {}
IPx_sources = ["IPCC", "IPBES", "IPOS"]
local_sources = ["AcclimaTerra", "PCAET","Biodiv"]
if any(source in IPx_sources for source in sources):
sources_types["IPx"] = list(set(sources).intersection(IPx_sources))
if any(source in local_sources for source in sources):
sources_types["POC"] = list(set(sources).intersection(local_sources))
return sources_types
def make_query_transform_node(llm,k_final=15):
"""
Creates a query transformation node that processes and transforms a given query state.
Args:
llm: The language model to be used for query decomposition and rewriting.
k_final (int, optional): The final number of questions to be generated. Defaults to 15.
Returns:
function: A function that takes a query state and returns a transformed state.
The returned function performs the following steps:
1. Checks if the query should be processed in auto mode based on the state.
2. Retrieves the input sources from the state or defaults to a predefined routing index.
3. Decomposes the query using the decomposition chain.
4. Analyzes each decomposed question using the rewriter chain.
5. Ensures that the sources returned by the language model are valid.
6. Explodes the questions into multiple questions with different sources based on the mode.
7. Constructs a new state with the transformed questions and their respective sources.
"""
decomposition_chain = make_query_decomposition_chain(llm)
query_analysis_chain = make_query_analysis_chain(llm)
query_translation_chain = make_query_translation_chain(llm)
def transform_query(state):
print("---- Transform query ----")
auto_mode = state.get("sources_auto", True)
sources_input = state.get("sources_input", ROUTING_INDEX["IPx"])
new_state = {}
# Decomposition
decomposition_output = decomposition_chain.invoke({"input":state["query"]})
new_state.update(decomposition_output)
# Query Analysis
questions = []
for question in new_state["questions"]:
question_state = {"question":question}
query_analysis_output = query_analysis_chain.invoke({"input":question})
# TODO WARNING llm should always return smthg
# The case when the llm does not return any sources or wrong ouput
if not query_analysis_output["sources"] or not all(source in ["IPCC", "IPBS", "IPOS","AcclimaTerra", "PCAET","Biodiv"] for source in query_analysis_output["sources"]):
query_analysis_output["sources"] = ["IPCC", "IPBES", "IPOS"]
sources_types = group_by_sources_types(query_analysis_output["sources"])
for source_type,sources in sources_types.items():
question_state = {
"question":question,
"sources":sources,
"source_type":source_type
}
questions.append(question_state)
# Translate question into the document language
for q in questions:
if q["source_type"]=="IPx":
translation_output = query_translation_chain.invoke({"input":q["question"],"language":"English"})
q["question"] = translation_output["question"]
elif q["source_type"]=="POC":
translation_output = query_translation_chain.invoke({"input":q["question"],"language":"French"})
q["question"] = translation_output["question"]
# Explode the questions into multiple questions with different sources
new_questions = []
for q in questions:
question,sources,source_type = q["question"],q["sources"], q["source_type"]
# If not auto mode we take the configuration
if not auto_mode:
sources = sources_input
for index,index_sources in ROUTING_INDEX.items():
selected_sources = list(set(sources).intersection(index_sources))
if len(selected_sources) > 0:
new_questions.append({"question":question,"sources":selected_sources,"index":index, "source_type":source_type})
# # Add the number of questions to search
# k_by_question = k_final // len(new_questions)
# for q in new_questions:
# q["k"] = k_by_question
# new_state["questions"] = new_questions
# new_state["remaining_questions"] = new_questions
n_questions = {
"total":len(new_questions),
"IPx":len([q for q in new_questions if q["index"] == "IPx"]),
"POC":len([q for q in new_questions if q["index"] == "POC"]),
}
new_state = {
"questions_list":new_questions,
"n_questions":n_questions,
"handled_questions_index":[],
}
print("New questions")
print(new_questions)
return new_state
return transform_query |