File size: 25,172 Bytes
05a8b3a 52bc1cc 16522e2 05a8b3a 16522e2 28684d8 52bc1cc 05a8b3a 52bc1cc 05a8b3a 16522e2 05a8b3a 16522e2 5bf8044 16522e2 5bf8044 16522e2 05a8b3a 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 16522e2 05a8b3a 16522e2 05a8b3a 16522e2 05a8b3a 16522e2 05a8b3a 16522e2 05a8b3a 16522e2 05a8b3a 16522e2 05a8b3a 16522e2 52bc1cc 05a8b3a 16522e2 05a8b3a 16522e2 05a8b3a 52bc1cc 05a8b3a 28684d8 16522e2 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 16522e2 52bc1cc 16522e2 52bc1cc 16522e2 52bc1cc 16522e2 05a8b3a 52bc1cc 05a8b3a 28684d8 52bc1cc 16522e2 52bc1cc 16522e2 6296e71 16522e2 28684d8 52bc1cc 16522e2 52bc1cc 16522e2 52bc1cc 16522e2 05a8b3a 16522e2 52bc1cc 16522e2 52bc1cc 16522e2 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 16522e2 52bc1cc 28684d8 52bc1cc 05a8b3a 52bc1cc 16522e2 28684d8 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 28684d8 52bc1cc 16522e2 52bc1cc 16522e2 28684d8 05a8b3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import sys
import os
from contextlib import contextmanager
from langchain_core.tools import tool
from langchain_core.runnables import chain
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_core.runnables import RunnableLambda
from ..reranker import rerank_docs, rerank_and_sort_docs
# from ...knowledge.retriever import ClimateQARetriever
from ...knowledge.openalex import OpenAlexRetriever
from .keywords_extraction import make_keywords_extraction_chain
from ..utils import log_event
from langchain_core.vectorstores import VectorStore
from typing import List
from langchain_core.documents.base import Document
from ..llm import get_llm
from .prompts import retrieve_chapter_prompt_template
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from ..vectorstore import get_pinecone_vectorstore
from ..embeddings import get_embeddings_function
import asyncio
from typing import Any, Dict, List, Tuple
def divide_into_parts(target, parts):
# Base value for each part
base = target // parts
# Remainder to distribute
remainder = target % parts
# List to hold the result
result = []
for i in range(parts):
if i < remainder:
# These parts get base value + 1
result.append(base + 1)
else:
# The rest get the base value
result.append(base)
return result
@contextmanager
def suppress_output():
# Open a null device
with open(os.devnull, 'w') as devnull:
# Store the original stdout and stderr
old_stdout = sys.stdout
old_stderr = sys.stderr
# Redirect stdout and stderr to the null device
sys.stdout = devnull
sys.stderr = devnull
try:
yield
finally:
# Restore stdout and stderr
sys.stdout = old_stdout
sys.stderr = old_stderr
@tool
def query_retriever(question):
"""Just a dummy tool to simulate the retriever query"""
return question
def _add_sources_used_in_metadata(docs,sources,question,index):
for doc in docs:
doc.metadata["sources_used"] = sources
doc.metadata["question_used"] = question
doc.metadata["index_used"] = index
return docs
def _get_k_summary_by_question(n_questions):
if n_questions == 0:
return 0
elif n_questions == 1:
return 5
elif n_questions == 2:
return 3
elif n_questions == 3:
return 2
else:
return 1
def _get_k_images_by_question(n_questions):
if n_questions == 0:
return 0
elif n_questions == 1:
return 7
elif n_questions == 2:
return 5
elif n_questions == 3:
return 3
else:
return 1
def _add_metadata_and_score(docs: List) -> Document:
# Add score to metadata
docs_with_metadata = []
for i,(doc,score) in enumerate(docs):
doc.page_content = doc.page_content.replace("\r\n"," ")
doc.metadata["similarity_score"] = score
doc.metadata["content"] = doc.page_content
if doc.metadata["page_number"] != "N/A":
doc.metadata["page_number"] = int(doc.metadata["page_number"]) + 1
else:
doc.metadata["page_number"] = 1
# doc.page_content = f"""Doc {i+1} - {doc.metadata['short_name']}: {doc.page_content}"""
docs_with_metadata.append(doc)
return docs_with_metadata
def remove_duplicates_chunks(docs):
# Remove duplicates or almost duplicates
docs = sorted(docs,key=lambda x: x[1],reverse=True)
seen = set()
result = []
for doc in docs:
if doc[0].page_content not in seen:
seen.add(doc[0].page_content)
result.append(doc)
return result
def get_ToCs(version: str) :
filters_text = {
"chunk_type":"toc",
"version": version
}
embeddings_function = get_embeddings_function()
vectorstore = get_pinecone_vectorstore(embeddings_function, index_name="climateqa-v2")
tocs = vectorstore.similarity_search_with_score(query="",filter = filters_text)
# remove duplicates or almost duplicates
tocs = remove_duplicates_chunks(tocs)
return tocs
async def get_POC_relevant_documents(
query: str,
vectorstore:VectorStore,
sources:list = ["Acclimaterra","PCAET","Plan Biodiversite"],
search_figures:bool = False,
search_only:bool = False,
k_documents:int = 10,
threshold:float = 0.6,
k_images: int = 5,
reports:list = [],
min_size:int = 200,
) :
# Prepare base search kwargs
filters = {}
docs_question = []
docs_images = []
# TODO add source selection
# if len(reports) > 0:
# filters["short_name"] = {"$in":reports}
# else:
# filters["source"] = { "$in": sources}
filters_text = {
**filters,
"chunk_type":"text",
# "report_type": {}, # TODO to be completed to choose the right documents / chapters according to the analysis of the question
}
docs_question = vectorstore.similarity_search_with_score(query=query,filter = filters_text,k = k_documents)
# remove duplicates or almost duplicates
docs_question = remove_duplicates_chunks(docs_question)
docs_question = [x for x in docs_question if x[1] > threshold]
if search_figures:
# Images
filters_image = {
**filters,
"chunk_type":"image"
}
docs_images = vectorstore.similarity_search_with_score(query=query,filter = filters_image,k = k_images)
docs_question, docs_images = _add_metadata_and_score(docs_question), _add_metadata_and_score(docs_images)
docs_question = [x for x in docs_question if len(x.page_content) > min_size]
return {
"docs_question" : docs_question,
"docs_images" : docs_images
}
async def get_POC_documents_by_ToC_relevant_documents(
query: str,
tocs: list,
vectorstore:VectorStore,
version: str,
sources:list = ["Acclimaterra","PCAET","Plan Biodiversite"],
search_figures:bool = False,
search_only:bool = False,
k_documents:int = 10,
threshold:float = 0.6,
k_images: int = 5,
reports:list = [],
min_size:int = 200,
proportion: float = 0.5,
) :
"""
Args:
- tocs : list with the table of contents of each document
- version : version of the parsed documents (e.g. "v4")
- proportion : share of documents retrieved using ToCs
"""
# Prepare base search kwargs
filters = {}
docs_question = []
docs_images = []
# TODO add source selection
# if len(reports) > 0:
# filters["short_name"] = {"$in":reports}
# else:
# filters["source"] = { "$in": sources}
k_documents_toc = round(k_documents * proportion)
relevant_tocs = await get_relevant_toc_level_for_query(query, tocs)
print(f"Relevant ToCs : {relevant_tocs}")
# Transform the ToC dict {"document": str, "chapter": str} into a list of string
toc_filters = [toc['chapter'] for toc in relevant_tocs]
filters_text_toc = {
**filters,
"chunk_type":"text",
"toc_level0": {"$in": toc_filters},
"version": version
# "report_type": {}, # TODO to be completed to choose the right documents / chapters according to the analysis of the question
}
docs_question = vectorstore.similarity_search_with_score(query=query,filter = filters_text_toc,k = k_documents_toc)
filters_text = {
**filters,
"chunk_type":"text",
"version": version
# "report_type": {}, # TODO to be completed to choose the right documents / chapters according to the analysis of the question
}
docs_question += vectorstore.similarity_search_with_score(query=query,filter = filters_text,k = k_documents - k_documents_toc)
# remove duplicates or almost duplicates
docs_question = remove_duplicates_chunks(docs_question)
docs_question = [x for x in docs_question if x[1] > threshold]
if search_figures:
# Images
filters_image = {
**filters,
"chunk_type":"image"
}
docs_images = vectorstore.similarity_search_with_score(query=query,filter = filters_image,k = k_images)
docs_question, docs_images = _add_metadata_and_score(docs_question), _add_metadata_and_score(docs_images)
docs_question = [x for x in docs_question if len(x.page_content) > min_size]
return {
"docs_question" : docs_question,
"docs_images" : docs_images
}
async def get_IPCC_relevant_documents(
query: str,
vectorstore:VectorStore,
sources:list = ["IPCC","IPBES","IPOS"],
search_figures:bool = False,
reports:list = [],
threshold:float = 0.6,
k_summary:int = 3,
k_total:int = 10,
k_images: int = 5,
namespace:str = "vectors",
min_size:int = 200,
search_only:bool = False,
) :
# Check if all elements in the list are either IPCC or IPBES
assert isinstance(sources,list)
assert sources
assert all([x in ["IPCC","IPBES","IPOS"] for x in sources])
assert k_total > k_summary, "k_total should be greater than k_summary"
# Prepare base search kwargs
filters = {}
if len(reports) > 0:
filters["short_name"] = {"$in":reports}
else:
filters["source"] = { "$in": sources}
# INIT
docs_summaries = []
docs_full = []
docs_images = []
if search_only:
# Only search for images if search_only is True
if search_figures:
filters_image = {
**filters,
"chunk_type":"image"
}
docs_images = vectorstore.similarity_search_with_score(query=query,filter = filters_image,k = k_images)
docs_images = _add_metadata_and_score(docs_images)
else:
# Regular search flow for text and optionally images
# Search for k_summary documents in the summaries dataset
filters_summaries = {
**filters,
"chunk_type":"text",
"report_type": { "$in":["SPM"]},
}
docs_summaries = vectorstore.similarity_search_with_score(query=query,filter = filters_summaries,k = k_summary)
docs_summaries = [x for x in docs_summaries if x[1] > threshold]
# Search for k_total - k_summary documents in the full reports dataset
filters_full = {
**filters,
"chunk_type":"text",
"report_type": { "$nin":["SPM"]},
}
docs_full = vectorstore.similarity_search_with_score(query=query,filter = filters_full,k = k_total)
if search_figures:
# Images
filters_image = {
**filters,
"chunk_type":"image"
}
docs_images = vectorstore.similarity_search_with_score(query=query,filter = filters_image,k = k_images)
docs_summaries, docs_full, docs_images = _add_metadata_and_score(docs_summaries), _add_metadata_and_score(docs_full), _add_metadata_and_score(docs_images)
# Filter if length are below threshold
docs_summaries = [x for x in docs_summaries if len(x.page_content) > min_size]
docs_full = [x for x in docs_full if len(x.page_content) > min_size]
return {
"docs_summaries" : docs_summaries,
"docs_full" : docs_full,
"docs_images" : docs_images,
}
def concatenate_documents(index, source_type, docs_question_dict, k_by_question, k_summary_by_question, k_images_by_question):
# Keep the right number of documents - The k_summary documents from SPM are placed in front
if source_type == "IPx":
docs_question = docs_question_dict["docs_summaries"][:k_summary_by_question] + docs_question_dict["docs_full"][:(k_by_question - k_summary_by_question)]
elif source_type == "POC" :
docs_question = docs_question_dict["docs_question"][:k_by_question]
else :
raise ValueError("source_type should be either Vector or POC")
# docs_question = [doc for key in docs_question_dict.keys() for doc in docs_question_dict[key]][:(k_by_question)]
images_question = docs_question_dict["docs_images"][:k_images_by_question]
return docs_question, images_question
# The chain callback is not necessary, but it propagates the langchain callbacks to the astream_events logger to display intermediate results
# @chain
async def retrieve_documents(
current_question: Dict[str, Any],
config: Dict[str, Any],
source_type: str,
vectorstore: VectorStore,
reranker: Any,
version: str = "",
search_figures: bool = False,
search_only: bool = False,
reports: list = [],
rerank_by_question: bool = True,
k_images_by_question: int = 5,
k_before_reranking: int = 100,
k_by_question: int = 5,
k_summary_by_question: int = 3,
tocs: list = [],
by_toc=False
) -> Tuple[List[Document], List[Document]]:
"""
Unpack the first question of the remaining questions, and retrieve and rerank corresponding documents, based on the question and selected_sources
Args:
state (dict): The current state containing documents, related content, relevant content sources, remaining questions and n_questions.
current_question (dict): The current question being processed.
config (dict): Configuration settings for logging and other purposes.
vectorstore (object): The vector store used to retrieve relevant documents.
reranker (object): The reranker used to rerank the retrieved documents.
llm (object): The language model used for processing.
rerank_by_question (bool, optional): Whether to rerank documents by question. Defaults to True.
k_final (int, optional): The final number of documents to retrieve. Defaults to 15.
k_before_reranking (int, optional): The number of documents to retrieve before reranking. Defaults to 100.
k_summary (int, optional): The number of summary documents to retrieve. Defaults to 5.
k_images (int, optional): The number of image documents to retrieve. Defaults to 5.
Returns:
dict: The updated state containing the retrieved and reranked documents, related content, and remaining questions.
"""
sources = current_question["sources"]
question = current_question["question"]
index = current_question["index"]
source_type = current_question["source_type"]
print(f"Retrieve documents for question: {question}")
await log_event({"question":question,"sources":sources,"index":index},"log_retriever",config)
print(f"""---- Retrieve documents from {current_question["source_type"]}----""")
if source_type == "IPx":
docs_question_dict = await get_IPCC_relevant_documents(
query = question,
vectorstore=vectorstore,
search_figures = search_figures,
sources = sources,
min_size = 200,
k_summary = k_before_reranking-1,
k_total = k_before_reranking,
k_images = k_images_by_question,
threshold = 0.5,
search_only = search_only,
reports = reports,
)
if source_type == 'POC':
if by_toc == True:
print("---- Retrieve documents by ToC----")
docs_question_dict = await get_POC_documents_by_ToC_relevant_documents(
query=question,
tocs = tocs,
vectorstore=vectorstore,
version=version,
search_figures = search_figures,
sources = sources,
threshold = 0.5,
search_only = search_only,
reports = reports,
min_size= 200,
k_documents= k_before_reranking,
k_images= k_by_question
)
else :
docs_question_dict = await get_POC_relevant_documents(
query = question,
vectorstore=vectorstore,
search_figures = search_figures,
sources = sources,
threshold = 0.5,
search_only = search_only,
reports = reports,
min_size= 200,
k_documents= k_before_reranking,
k_images= k_by_question
)
# Rerank
if reranker is not None and rerank_by_question:
with suppress_output():
for key in docs_question_dict.keys():
docs_question_dict[key] = rerank_and_sort_docs(reranker,docs_question_dict[key],question)
else:
# Add a default reranking score
for doc in docs_question:
doc.metadata["reranking_score"] = doc.metadata["similarity_score"]
# Keep the right number of documents
docs_question, images_question = concatenate_documents(index, source_type, docs_question_dict, k_by_question, k_summary_by_question, k_images_by_question)
# Rerank the documents to put the most relevant in front
if reranker is not None and rerank_by_question:
docs_question = rerank_and_sort_docs(reranker, docs_question, question)
# Add sources used in the metadata
docs_question = _add_sources_used_in_metadata(docs_question,sources,question,index)
images_question = _add_sources_used_in_metadata(images_question,sources,question,index)
return docs_question, images_question
async def retrieve_documents_for_all_questions(
search_figures,
search_only,
reports,
questions_list,
n_questions,
config,
source_type,
to_handle_questions_index,
vectorstore,
reranker,
rerank_by_question=True,
k_final=15,
k_before_reranking=100,
version: str = "",
tocs: list[dict] = [],
by_toc: bool = False
):
"""
Retrieve documents in parallel for all questions.
"""
# to_handle_questions_index = [x for x in state["questions_list"] if x["source_type"] == "IPx"]
# TODO split les questions selon le type de sources dans le state question + conditions sur le nombre de questions traités par type de source
# search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources_selection"]
# search_only = state["search_only"]
# reports = state["reports"]
# questions_list = state["questions_list"]
# k_by_question = k_final // state["n_questions"]["total"]
# k_summary_by_question = _get_k_summary_by_question(state["n_questions"]["total"])
# k_images_by_question = _get_k_images_by_question(state["n_questions"]["total"])
k_by_question = k_final // n_questions
k_summary_by_question = _get_k_summary_by_question(n_questions)
k_images_by_question = _get_k_images_by_question(n_questions)
k_before_reranking=100
print(f"Source type here is {source_type}")
tasks = [
retrieve_documents(
current_question=question,
config=config,
source_type=source_type,
vectorstore=vectorstore,
reranker=reranker,
search_figures=search_figures,
search_only=search_only,
reports=reports,
rerank_by_question=rerank_by_question,
k_images_by_question=k_images_by_question,
k_before_reranking=k_before_reranking,
k_by_question=k_by_question,
k_summary_by_question=k_summary_by_question,
tocs=tocs,
version=version,
by_toc=by_toc
)
for i, question in enumerate(questions_list) if i in to_handle_questions_index
]
results = await asyncio.gather(*tasks)
# Combine results
new_state = {"documents": [], "related_contents": [], "handled_questions_index": to_handle_questions_index}
for docs_question, images_question in results:
new_state["documents"].extend(docs_question)
new_state["related_contents"].extend(images_question)
return new_state
# ToC Retriever
async def get_relevant_toc_level_for_query(
query: str,
tocs: list[Document],
) -> list[dict] :
doc_list = []
for doc in tocs:
doc_name = doc[0].metadata['name']
toc = doc[0].page_content
doc_list.append({'document': doc_name, 'toc': toc})
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
prompt = ChatPromptTemplate.from_template(retrieve_chapter_prompt_template)
chain = prompt | llm | StrOutputParser()
response = chain.invoke({"query": query, "doc_list": doc_list})
try:
relevant_tocs = eval(response)
except Exception as e:
print(f" Failed to parse the result because of : {e}")
return relevant_tocs
def make_IPx_retriever_node(vectorstore,reranker,llm,rerank_by_question=True, k_final=15, k_before_reranking=100, k_summary=5):
async def retrieve_IPx_docs(state, config):
source_type = "IPx"
IPx_questions_index = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "IPx"]
search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources_selection"]
search_only = state["search_only"]
reports = state["reports"]
questions_list = state["questions_list"]
n_questions=state["n_questions"]["total"]
state = await retrieve_documents_for_all_questions(
search_figures=search_figures,
search_only=search_only,
reports=reports,
questions_list=questions_list,
n_questions=n_questions,
config=config,
source_type=source_type,
to_handle_questions_index=IPx_questions_index,
vectorstore=vectorstore,
reranker=reranker,
rerank_by_question=rerank_by_question,
k_final=k_final,
k_before_reranking=k_before_reranking,
)
return state
return retrieve_IPx_docs
def make_POC_retriever_node(vectorstore,reranker,llm,rerank_by_question=True, k_final=15, k_before_reranking=100, k_summary=5):
async def retrieve_POC_docs_node(state, config):
if "POC region" not in state["relevant_content_sources_selection"] :
return {}
source_type = "POC"
POC_questions_index = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "POC"]
search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources_selection"]
search_only = state["search_only"]
reports = state["reports"]
questions_list = state["questions_list"]
n_questions=state["n_questions"]["total"]
state = await retrieve_documents_for_all_questions(
search_figures=search_figures,
search_only=search_only,
reports=reports,
questions_list=questions_list,
n_questions=n_questions,
config=config,
source_type=source_type,
to_handle_questions_index=POC_questions_index,
vectorstore=vectorstore,
reranker=reranker,
rerank_by_question=rerank_by_question,
k_final=k_final,
k_before_reranking=k_before_reranking,
)
return state
return retrieve_POC_docs_node
def make_POC_by_ToC_retriever_node(
vectorstore: VectorStore,
reranker,
llm,
version: str = "",
rerank_by_question=True,
k_final=15,
k_before_reranking=100,
k_summary=5,
):
async def retrieve_POC_docs_node(state, config):
if "POC region" not in state["relevant_content_sources_selection"] :
return {}
search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources_selection"]
search_only = state["search_only"]
search_only = state["search_only"]
reports = state["reports"]
questions_list = state["questions_list"]
n_questions=state["n_questions"]["total"]
tocs = get_ToCs(version=version)
source_type = "POC"
POC_questions_index = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "POC"]
state = await retrieve_documents_for_all_questions(
search_figures=search_figures,
search_only=search_only,
config=config,
reports=reports,
questions_list=questions_list,
n_questions=n_questions,
source_type=source_type,
to_handle_questions_index=POC_questions_index,
vectorstore=vectorstore,
reranker=reranker,
rerank_by_question=rerank_by_question,
k_final=k_final,
k_before_reranking=k_before_reranking,
tocs=tocs,
version=version,
by_toc=True
)
return state
return retrieve_POC_docs_node
|