File size: 3,148 Bytes
3ca8396
 
 
 
 
 
8bd064f
3ca8396
8bd064f
3ca8396
8bd064f
3ca8396
8bd064f
3ca8396
 
 
 
 
 
 
 
8bd064f
 
 
 
 
 
3ca8396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import re
import openai
import pandas as pd
from geopy.geocoders import Nominatim
import sqlite3
import ast
from climateqa.engine.llm import get_llm

def detect_location_with_openai(sentence):
    """
    Detects locations in a sentence using OpenAI's API via LangChain.
    """
    llm = get_llm()

    prompt = f"""
    Extract all locations (cities, countries, states, or geographical areas) mentioned in the following sentence.
    Return the result as a Python list. If no locations are mentioned, return an empty list.
    
    Sentence: "{sentence}"
    """

    response = llm.invoke(prompt)
    location_list = ast.literal_eval(response.content.strip("```python\n").strip())
    if location_list:
        return location_list[0]
    else:
        return ""

def detectTable(sql_query):
    pattern = r'(?i)\bFROM\s+((?:`[^`]+`|"[^"]+"|\'[^\']+\'|\w+)(?:\.(?:`[^`]+`|"[^"]+"|\'[^\']+\'|\w+))*)'
    matches = re.findall(pattern, sql_query)
    return matches



def loc2coords(location : str):
    geolocator = Nominatim(user_agent="city_to_latlong")
    location = geolocator.geocode(location)
    return (location.latitude, location.longitude)


def coords2loc(coords : tuple):
    geolocator = Nominatim(user_agent="coords_to_city")
    try:
        location = geolocator.reverse(coords)
        return location.address
    except Exception as e:
        print(f"Error: {e}")
        return "Unknown Location"  


def nearestNeighbourSQL(db: str, location: tuple, table : str):
    conn = sqlite3.connect(db)
    long = round(location[1], 3)
    lat = round(location[0], 3)
    cursor  = conn.cursor()
    cursor.execute(f"SELECT lat, lon FROM {table} WHERE lat BETWEEN {lat - 0.3} AND {lat + 0.3} AND lon BETWEEN {long - 0.3} AND {long + 0.3}")
    results = cursor.fetchall()
    return results[0]

def detect_relevant_tables(user_question, llm):
    table_names_list = [
        "Frequency_of_rainy_days_index",
        "Winter_precipitation_total",
        "Summer_precipitation_total",
        "Annual_precipitation_total",
        # "Remarkable_daily_precipitation_total_(Q99)",
        "Frequency_of_remarkable_daily_precipitation",
        "Extreme_precipitation_intensity",
        "Mean_winter_temperature",
        "Mean_summer_temperature",
        "Number_of_tropical_nights",
        "Maximum_summer_temperature",
        "Number_of_days_with_Tx_above_30C",
        "Number_of_days_with_Tx_above_35C",
        "Drought_index"
    ]
    prompt = (
        f"You are helping to build a sql query to retrieve relevant data for a user question."
        f"The different tables are {table_names_list}."
        f"The user question is {user_question}. Write the relevant tables to use. Answer only a python list of table name."
    )
    table_names = ast.literal_eval(llm.invoke(prompt).content.strip("```python\n").strip())
    return table_names

def replace_coordonates(coords, query, coords_tables):
    n = query.count(str(coords[0]))

    for i in range(n):
        query = query.replace(str(coords[0]), str(coords_tables[i][0]),1)
        query = query.replace(str(coords[1]), str(coords_tables[i][1]),1)
    return query