File size: 13,216 Bytes
abafbcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
from vanna.base import VannaBase
from pinecone import Pinecone
from climateqa.engine.embeddings import get_embeddings_function
import pandas as pd
import hashlib
class MyCustomVectorDB(VannaBase):
"""
VectorDB class for storing and retrieving vectors from Pinecone.
args :
config (dict) : Configuration dictionary containing the Pinecone API key and the index name :
- pc_api_key (str) : Pinecone API key
- index_name (str) : Pinecone index name
- top_k (int) : Number of top results to return (default = 2)
"""
def __init__(self,config):
super().__init__(config = config)
try :
self.api_key = config.get('pc_api_key')
self.index_name = config.get('index_name')
except :
raise Exception("Please provide the Pinecone API key and the index name")
self.pc = Pinecone(api_key = self.api_key)
self.index = self.pc.Index(self.index_name)
self.top_k = config.get('top_k', 2)
self.embeddings = get_embeddings_function()
def check_embedding(self, id, namespace):
fetched = self.index.fetch(ids = [id], namespace = namespace)
if fetched['vectors'] == {}:
return False
return True
def generate_hash_id(self, data: str) -> str:
"""
Generate a unique hash ID for the given data.
Args:
data (str): The input data to hash (e.g., a concatenated string of user attributes).
Returns:
str: A unique hash ID as a hexadecimal string.
"""
data_bytes = data.encode('utf-8')
hash_object = hashlib.sha256(data_bytes)
hash_id = hash_object.hexdigest()
return hash_id
def add_ddl(self, ddl: str, **kwargs) -> str:
id = self.generate_hash_id(ddl) + '_ddl'
if self.check_embedding(id, 'ddl'):
print(f"DDL having id {id} already exists")
return id
self.index.upsert(
vectors = [(id, self.embeddings.embed_query(ddl), {'ddl': ddl})],
namespace = 'ddl'
)
return id
def add_documentation(self, doc: str, **kwargs) -> str:
id = self.generate_hash_id(doc) + '_doc'
if self.check_embedding(id, 'documentation'):
print(f"Documentation having id {id} already exists")
return id
self.index.upsert(
vectors = [(id, self.embeddings.embed_query(doc), {'doc': doc})],
namespace = 'documentation'
)
return id
def add_question_sql(self, question: str, sql: str, **kwargs) -> str:
id = self.generate_hash_id(question) + '_sql'
if self.check_embedding(id, 'question_sql'):
print(f"Question-SQL pair having id {id} already exists")
return id
self.index.upsert(
vectors = [(id, self.embeddings.embed_query(question + sql), {'question': question, 'sql': sql})],
namespace = 'question_sql'
)
return id
def get_related_ddl(self, question: str, **kwargs) -> list:
res = self.index.query(
vector=self.embeddings.embed_query(question),
top_k=self.top_k,
namespace='ddl',
include_metadata=True
)
return [match['metadata']['ddl'] for match in res['matches']]
def get_related_documentation(self, question: str, **kwargs) -> list:
res = self.index.query(
vector=self.embeddings.embed_query(question),
top_k=self.top_k,
namespace='documentation',
include_metadata=True
)
return [match['metadata']['doc'] for match in res['matches']]
def get_similar_question_sql(self, question: str, **kwargs) -> list:
res = self.index.query(
vector=self.embeddings.embed_query(question),
top_k=self.top_k,
namespace='question_sql',
include_metadata=True
)
return [(match['metadata']['question'], match['metadata']['sql']) for match in res['matches']]
def get_training_data(self, **kwargs) -> pd.DataFrame:
list_of_data = []
namespaces = ['ddl', 'documentation', 'question_sql']
for namespace in namespaces:
data = self.index.query(
top_k=10000,
namespace=namespace,
include_metadata=True,
include_values=False
)
for match in data['matches']:
list_of_data.append(match['metadata'])
return pd.DataFrame(list_of_data)
def remove_training_data(self, id: str, **kwargs) -> bool:
if id.endswith("_ddl"):
self.Index.delete(ids=[id], namespace="_ddl")
return True
if id.endswith("_sql"):
self.index.delete(ids=[id], namespace="_sql")
return True
if id.endswith("_doc"):
self.Index.delete(ids=[id], namespace="_doc")
return True
return False
def generate_embedding(self, text, **kwargs):
# Implement the method here
pass
def get_sql_prompt(
self,
initial_prompt : str,
question: str,
question_sql_list: list,
ddl_list: list,
doc_list: list,
**kwargs,
):
"""
Example:
```python
vn.get_sql_prompt(
question="What are the top 10 customers by sales?",
question_sql_list=[{"question": "What are the top 10 customers by sales?", "sql": "SELECT * FROM customers ORDER BY sales DESC LIMIT 10"}],
ddl_list=["CREATE TABLE customers (id INT, name TEXT, sales DECIMAL)"],
doc_list=["The customers table contains information about customers and their sales."],
)
```
This method is used to generate a prompt for the LLM to generate SQL.
Args:
question (str): The question to generate SQL for.
question_sql_list (list): A list of questions and their corresponding SQL statements.
ddl_list (list): A list of DDL statements.
doc_list (list): A list of documentation.
Returns:
any: The prompt for the LLM to generate SQL.
"""
if initial_prompt is None:
initial_prompt = f"You are a {self.dialect} expert. " + \
"Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions. "
initial_prompt = self.add_ddl_to_prompt(
initial_prompt, ddl_list, max_tokens=self.max_tokens
)
if self.static_documentation != "":
doc_list.append(self.static_documentation)
initial_prompt = self.add_documentation_to_prompt(
initial_prompt, doc_list, max_tokens=self.max_tokens
)
# initial_prompt = self.add_sql_to_prompt(
# initial_prompt, question_sql_list, max_tokens=self.max_tokens
# )
initial_prompt += (
"===Response Guidelines \n"
"1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question. \n"
"2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql \n"
"3. If the provided context is insufficient, please give a sql query based on your knowledge and the context provided. \n"
"4. Please use the most relevant table(s). \n"
"5. If the question has been asked and answered before, please repeat the answer exactly as it was given before. \n"
f"6. Ensure that the output SQL is {self.dialect}-compliant and executable, and free of syntax errors. \n"
f"7. Add a description of the table in the result of the sql query, if relevant. \n"
"8 Make sure to include the relevant KPI in the SQL query. The query should return impactfull data \n"
# f"8. If a set of latitude,longitude is provided, make a intermediate query to find the nearest value in the table and replace the coordinates in the sql query. \n"
# "7. Add a description of the table in the result of the sql query."
# "7. If the question is about a specific latitude, longitude, query an interval of 0.3 and keep only the first set of coordinate. \n"
# "7. Table names should be included in the result of the sql query. Use for example Mean_winter_temperature AS table_name in the query \n"
)
message_log = [self.system_message(initial_prompt)]
for example in question_sql_list:
if example is None:
print("example is None")
else:
if example is not None and "question" in example and "sql" in example:
message_log.append(self.user_message(example["question"]))
message_log.append(self.assistant_message(example["sql"]))
message_log.append(self.user_message(question))
return message_log
# def get_sql_prompt(
# self,
# initial_prompt : str,
# question: str,
# question_sql_list: list,
# ddl_list: list,
# doc_list: list,
# **kwargs,
# ):
# """
# Example:
# ```python
# vn.get_sql_prompt(
# question="What are the top 10 customers by sales?",
# question_sql_list=[{"question": "What are the top 10 customers by sales?", "sql": "SELECT * FROM customers ORDER BY sales DESC LIMIT 10"}],
# ddl_list=["CREATE TABLE customers (id INT, name TEXT, sales DECIMAL)"],
# doc_list=["The customers table contains information about customers and their sales."],
# )
# ```
# This method is used to generate a prompt for the LLM to generate SQL.
# Args:
# question (str): The question to generate SQL for.
# question_sql_list (list): A list of questions and their corresponding SQL statements.
# ddl_list (list): A list of DDL statements.
# doc_list (list): A list of documentation.
# Returns:
# any: The prompt for the LLM to generate SQL.
# """
# if initial_prompt is None:
# initial_prompt = f"You are a {self.dialect} expert. " + \
# "Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions. "
# initial_prompt = self.add_ddl_to_prompt(
# initial_prompt, ddl_list, max_tokens=self.max_tokens
# )
# if self.static_documentation != "":
# doc_list.append(self.static_documentation)
# initial_prompt = self.add_documentation_to_prompt(
# initial_prompt, doc_list, max_tokens=self.max_tokens
# )
# initial_prompt += (
# "===Response Guidelines \n"
# "1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question. \n"
# "2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql \n"
# "3. If the provided context is insufficient, please explain why it can't be generated. \n"
# "4. Please use the most relevant table(s). \n"
# "5. If the question has been asked and answered before, please repeat the answer exactly as it was given before. \n"
# f"6. Ensure that the output SQL is {self.dialect}-compliant and executable, and free of syntax errors. \n"
# )
# message_log = [self.system_message(initial_prompt)]
# for example in question_sql_list:
# if example is None:
# print("example is None")
# else:
# if example is not None and "question" in example and "sql" in example:
# message_log.append(self.user_message(example["question"]))
# message_log.append(self.assistant_message(example["sql"]))
# message_log.append(self.user_message(question))
# return message_log |