timeki commited on
Commit
0f4d8bb
·
2 Parent(s): c5c1557 1c0c532

Merge remote-tracking branch 'origin/dev' into pr/21

Browse files
app.py CHANGED
@@ -12,9 +12,11 @@ from climateqa.engine.reranker import get_reranker
12
  from climateqa.engine.graph import make_graph_agent,make_graph_agent_poc
13
  from climateqa.engine.chains.retrieve_papers import find_papers
14
  from climateqa.chat import start_chat, chat_stream, finish_chat
 
15
 
16
  from front.tabs import (create_config_modal, create_examples_tab, create_papers_tab, create_figures_tab, create_chat_interface, create_about_tab)
17
  from front.utils import process_figures
 
18
 
19
 
20
  from utils import create_user_id
@@ -67,9 +69,9 @@ vectorstore_graphs = get_pinecone_vectorstore(embeddings_function, index_name=os
67
  vectorstore_region = get_pinecone_vectorstore(embeddings_function, index_name=os.getenv("PINECONE_API_INDEX_LOCAL_V2"))
68
 
69
  llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
70
- if os.getenv("ENV")=="GRADIO_ENV":
71
  reranker = get_reranker("nano")
72
- else:
73
  reranker = get_reranker("large")
74
 
75
  agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, vectorstore_region = vectorstore_region, reranker=reranker, threshold_docs=0.2)
@@ -94,7 +96,7 @@ async def chat_poc(query, history, audience, sources, reports, relevant_content_
94
  # Function to update modal visibility
95
  def update_config_modal_visibility(config_open):
96
  new_config_visibility_status = not config_open
97
- return gr.update(visible=new_config_visibility_status), new_config_visibility_status
98
 
99
 
100
  def update_sources_number_display(sources_textbox, figures_cards, current_graphs, papers_html):
@@ -142,7 +144,7 @@ def cqa_tab(tab_name):
142
 
143
  # Papers subtab
144
  with gr.Tab("Papers", elem_id="tab-citations", id=4) as tab_papers:
145
- papers_summary, papers_html, citations_network, papers_modal = create_papers_tab()
146
 
147
  # Graphs subtab
148
  with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
@@ -150,6 +152,20 @@ def cqa_tab(tab_name):
150
  "<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",
151
  elem_id="graphs-container"
152
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  return {
154
  "chatbot": chatbot,
155
  "textbox": textbox,
@@ -162,6 +178,7 @@ def cqa_tab(tab_name):
162
  "figures_cards": figures_cards,
163
  "gallery_component": gallery_component,
164
  "config_button": config_button,
 
165
  "papers_html": papers_html,
166
  "citations_network": citations_network,
167
  "papers_summary": papers_summary,
@@ -170,10 +187,23 @@ def cqa_tab(tab_name):
170
  "tab_figures": tab_figures,
171
  "tab_graphs": tab_graphs,
172
  "tab_papers": tab_papers,
173
- "graph_container": graphs_container
 
 
 
174
  }
175
 
176
-
 
 
 
 
 
 
 
 
 
 
177
 
178
  def event_handling(
179
  main_tab_components,
@@ -190,7 +220,8 @@ def event_handling(
190
  sources_textbox = main_tab_components["sources_textbox"]
191
  figures_cards = main_tab_components["figures_cards"]
192
  gallery_component = main_tab_components["gallery_component"]
193
- config_button = main_tab_components["config_button"]
 
194
  papers_html = main_tab_components["papers_html"]
195
  citations_network = main_tab_components["citations_network"]
196
  papers_summary = main_tab_components["papers_summary"]
@@ -200,9 +231,13 @@ def event_handling(
200
  tab_graphs = main_tab_components["tab_graphs"]
201
  tab_papers = main_tab_components["tab_papers"]
202
  graphs_container = main_tab_components["graph_container"]
 
 
 
203
 
204
- config_open = config_components["config_open"]
205
- config_modal = config_components["config_modal"]
 
206
  dropdown_sources = config_components["dropdown_sources"]
207
  dropdown_reports = config_components["dropdown_reports"]
208
  dropdown_external_sources = config_components["dropdown_external_sources"]
@@ -211,18 +246,18 @@ def event_handling(
211
  after = config_components["after"]
212
  output_query = config_components["output_query"]
213
  output_language = config_components["output_language"]
214
- close_config_modal = config_components["close_config_modal_button"]
215
 
216
  new_sources_hmtl = gr.State([])
217
-
218
- print("textbox id : ", textbox.elem_id)
219
 
220
- for button in [config_button, close_config_modal]:
221
- button.click(
222
- fn=update_config_modal_visibility,
223
- inputs=[config_open],
224
- outputs=[config_modal, config_open]
225
- )
226
 
227
  if tab_name == "ClimateQ&A":
228
  print("chat cqa - message sent")
@@ -265,10 +300,14 @@ def event_handling(
265
  component.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs, papers_html], [tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
266
 
267
  # Search for papers
268
- for component in [textbox, examples_hidden]:
269
  component.submit(find_papers, [component, after, dropdown_external_sources], [papers_html, citations_network, papers_summary])
 
270
 
271
 
 
 
 
272
 
273
  def main_ui():
274
  # config_open = gr.State(True)
@@ -282,7 +321,9 @@ def main_ui():
282
  create_about_tab()
283
 
284
  event_handling(cqa_components, config_components, tab_name = 'ClimateQ&A')
285
- event_handling(local_cqa_components, config_components, tab_name = 'Beta - POC Adapt\'Action')
 
 
286
 
287
  demo.queue()
288
 
 
12
  from climateqa.engine.graph import make_graph_agent,make_graph_agent_poc
13
  from climateqa.engine.chains.retrieve_papers import find_papers
14
  from climateqa.chat import start_chat, chat_stream, finish_chat
15
+ from climateqa.engine.talk_to_data.main import ask_vanna
16
 
17
  from front.tabs import (create_config_modal, create_examples_tab, create_papers_tab, create_figures_tab, create_chat_interface, create_about_tab)
18
  from front.utils import process_figures
19
+ from gradio_modal import Modal
20
 
21
 
22
  from utils import create_user_id
 
69
  vectorstore_region = get_pinecone_vectorstore(embeddings_function, index_name=os.getenv("PINECONE_API_INDEX_LOCAL_V2"))
70
 
71
  llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
72
+ if os.environ["GRADIO_ENV"] == "local":
73
  reranker = get_reranker("nano")
74
+ else :
75
  reranker = get_reranker("large")
76
 
77
  agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, vectorstore_region = vectorstore_region, reranker=reranker, threshold_docs=0.2)
 
96
  # Function to update modal visibility
97
  def update_config_modal_visibility(config_open):
98
  new_config_visibility_status = not config_open
99
+ return Modal(visible=new_config_visibility_status), new_config_visibility_status
100
 
101
 
102
  def update_sources_number_display(sources_textbox, figures_cards, current_graphs, papers_html):
 
144
 
145
  # Papers subtab
146
  with gr.Tab("Papers", elem_id="tab-citations", id=4) as tab_papers:
147
+ papers_direct_search, papers_summary, papers_html, citations_network, papers_modal = create_papers_tab()
148
 
149
  # Graphs subtab
150
  with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
 
152
  "<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",
153
  elem_id="graphs-container"
154
  )
155
+ with gr.Tab("DRIAS", elem_id="tab-vanna", id=6) as tab_vanna:
156
+ vanna_direct_question = gr.Textbox(label="Direct Question", placeholder="You can write direct question here",elem_id="direct-question", interactive=True)
157
+ with gr.Accordion("Details",elem_id = 'vanna-details', open=False) as vanna_details :
158
+ vanna_sql_query = gr.Textbox(label="SQL Query Used", elem_id="sql-query", interactive=False)
159
+ show_vanna_table = gr.Button("Show Table", elem_id="show-table")
160
+ with Modal(visible=False) as vanna_table_modal:
161
+ vanna_table = gr.DataFrame([], elem_id="vanna-table")
162
+ close_vanna_modal = gr.Button("Close", elem_id="close-vanna-modal")
163
+ close_vanna_modal.click(lambda: Modal(visible=False),None, [vanna_table_modal])
164
+ show_vanna_table.click(lambda: Modal(visible=True),None ,[vanna_table_modal])
165
+
166
+ vanna_display = gr.Plot()
167
+ vanna_direct_question.submit(ask_vanna, [vanna_direct_question], [vanna_sql_query ,vanna_table, vanna_display])
168
+
169
  return {
170
  "chatbot": chatbot,
171
  "textbox": textbox,
 
178
  "figures_cards": figures_cards,
179
  "gallery_component": gallery_component,
180
  "config_button": config_button,
181
+ "papers_direct_search" : papers_direct_search,
182
  "papers_html": papers_html,
183
  "citations_network": citations_network,
184
  "papers_summary": papers_summary,
 
187
  "tab_figures": tab_figures,
188
  "tab_graphs": tab_graphs,
189
  "tab_papers": tab_papers,
190
+ "graph_container": graphs_container,
191
+ "vanna_sql_query": vanna_sql_query,
192
+ "vanna_table" : vanna_table,
193
+ "vanna_display": vanna_display
194
  }
195
 
196
+ def config_event_handling(main_tabs_components : list[dict], config_componenets : dict):
197
+ config_open = config_componenets["config_open"]
198
+ config_modal = config_componenets["config_modal"]
199
+ close_config_modal = config_componenets["close_config_modal_button"]
200
+
201
+ for button in [close_config_modal] + [main_tab_component["config_button"] for main_tab_component in main_tabs_components]:
202
+ button.click(
203
+ fn=update_config_modal_visibility,
204
+ inputs=[config_open],
205
+ outputs=[config_modal, config_open]
206
+ )
207
 
208
  def event_handling(
209
  main_tab_components,
 
220
  sources_textbox = main_tab_components["sources_textbox"]
221
  figures_cards = main_tab_components["figures_cards"]
222
  gallery_component = main_tab_components["gallery_component"]
223
+ # config_button = main_tab_components["config_button"]
224
+ papers_direct_search = main_tab_components["papers_direct_search"]
225
  papers_html = main_tab_components["papers_html"]
226
  citations_network = main_tab_components["citations_network"]
227
  papers_summary = main_tab_components["papers_summary"]
 
231
  tab_graphs = main_tab_components["tab_graphs"]
232
  tab_papers = main_tab_components["tab_papers"]
233
  graphs_container = main_tab_components["graph_container"]
234
+ vanna_sql_query = main_tab_components["vanna_sql_query"]
235
+ vanna_table = main_tab_components["vanna_table"]
236
+ vanna_display = main_tab_components["vanna_display"]
237
 
238
+
239
+ # config_open = config_components["config_open"]
240
+ # config_modal = config_components["config_modal"]
241
  dropdown_sources = config_components["dropdown_sources"]
242
  dropdown_reports = config_components["dropdown_reports"]
243
  dropdown_external_sources = config_components["dropdown_external_sources"]
 
246
  after = config_components["after"]
247
  output_query = config_components["output_query"]
248
  output_language = config_components["output_language"]
249
+ # close_config_modal = config_components["close_config_modal_button"]
250
 
251
  new_sources_hmtl = gr.State([])
252
+ ttd_data = gr.State([])
253
+
254
 
255
+ # for button in [config_button, close_config_modal]:
256
+ # button.click(
257
+ # fn=update_config_modal_visibility,
258
+ # inputs=[config_open],
259
+ # outputs=[config_modal, config_open]
260
+ # )
261
 
262
  if tab_name == "ClimateQ&A":
263
  print("chat cqa - message sent")
 
300
  component.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs, papers_html], [tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
301
 
302
  # Search for papers
303
+ for component in [textbox, examples_hidden, papers_direct_search]:
304
  component.submit(find_papers, [component, after, dropdown_external_sources], [papers_html, citations_network, papers_summary])
305
+
306
 
307
 
308
+ # if tab_name == "Beta - POC Adapt'Action": # Not untill results are good enough
309
+ # # Drias search
310
+ # textbox.submit(ask_vanna, [textbox], [vanna_sql_query ,vanna_table, vanna_display])
311
 
312
  def main_ui():
313
  # config_open = gr.State(True)
 
321
  create_about_tab()
322
 
323
  event_handling(cqa_components, config_components, tab_name = 'ClimateQ&A')
324
+ event_handling(local_cqa_components, config_components, tab_name = "Beta - POC Adapt'Action")
325
+
326
+ config_event_handling([cqa_components,local_cqa_components] ,config_components)
327
 
328
  demo.queue()
329
 
climateqa/chat.py CHANGED
@@ -53,6 +53,13 @@ def log_interaction_to_azure(history, output_query, sources, docs, share_client,
53
  print(f"Error logging on Azure Blob Storage: {e}")
54
  error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
55
  raise gr.Error(error_msg)
 
 
 
 
 
 
 
56
 
57
  # Main chat function
58
  async def chat_stream(
@@ -121,6 +128,7 @@ async def chat_stream(
121
  used_documents = []
122
  retrieved_contents = []
123
  answer_message_content = ""
 
124
 
125
  # Define processing steps
126
  steps_display = {
@@ -142,6 +150,14 @@ async def chat_stream(
142
  history, used_documents, retrieved_contents = handle_retrieved_documents(
143
  event, history, used_documents, retrieved_contents
144
  )
 
 
 
 
 
 
 
 
145
  if event["event"] == "on_chain_end" and event["name"] == "answer_search" :
146
  docs = event["data"]["input"]["documents"]
147
  docs_html = convert_to_docs_to_html(docs)
@@ -184,7 +200,7 @@ async def chat_stream(
184
  sub_questions = [q["question"] + "-> relevant sources : " + str(q["sources"]) for q in event["data"]["output"]["questions_list"]]
185
  history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
186
 
187
- yield history, docs_html, output_query, output_language, related_contents, graphs_html
188
 
189
  except Exception as e:
190
  print(f"Event {event} has failed")
@@ -195,4 +211,4 @@ async def chat_stream(
195
  # Call the function to log interaction
196
  log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id)
197
 
198
- yield history, docs_html, output_query, output_language, related_contents, graphs_html
 
53
  print(f"Error logging on Azure Blob Storage: {e}")
54
  error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
55
  raise gr.Error(error_msg)
56
+
57
+ def handle_numerical_data(event):
58
+ if event["name"] == "retrieve_drias_data" and event["event"] == "on_chain_end":
59
+ numerical_data = event["data"]["output"]["drias_data"]
60
+ sql_query = event["data"]["output"]["drias_sql_query"]
61
+ return numerical_data, sql_query
62
+ return None, None
63
 
64
  # Main chat function
65
  async def chat_stream(
 
128
  used_documents = []
129
  retrieved_contents = []
130
  answer_message_content = ""
131
+ vanna_data = {}
132
 
133
  # Define processing steps
134
  steps_display = {
 
150
  history, used_documents, retrieved_contents = handle_retrieved_documents(
151
  event, history, used_documents, retrieved_contents
152
  )
153
+ # Handle Vanna retrieval
154
+ # if event["event"] == "on_chain_end" and event["name"] in ["retrieve_documents","retrieve_local_data"] and event["data"]["output"] != None:
155
+ # df_output_vanna, sql_query = handle_numerical_data(
156
+ # event
157
+ # )
158
+ # vanna_data = {"df_output": df_output_vanna, "sql_query": sql_query}
159
+
160
+
161
  if event["event"] == "on_chain_end" and event["name"] == "answer_search" :
162
  docs = event["data"]["input"]["documents"]
163
  docs_html = convert_to_docs_to_html(docs)
 
200
  sub_questions = [q["question"] + "-> relevant sources : " + str(q["sources"]) for q in event["data"]["output"]["questions_list"]]
201
  history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
202
 
203
+ yield history, docs_html, output_query, output_language, related_contents, graphs_html#, vanna_data
204
 
205
  except Exception as e:
206
  print(f"Event {event} has failed")
 
211
  # Call the function to log interaction
212
  log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id)
213
 
214
+ yield history, docs_html, output_query, output_language, related_contents, graphs_html#, vanna_data
climateqa/engine/chains/drias_retriever.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import os
3
+ from climateqa.engine.talk_to_data.main import ask_vanna
4
+
5
+
6
+ def make_drias_retriever_node(llm):
7
+
8
+ def retrieve_drias_data(state):
9
+ print("---- Retrieving data from DRIAS ----")
10
+ query = state["query"]
11
+ sql_query, df, fig = ask_vanna(query)
12
+ state["drias_data"] = df
13
+ state["drias_sql_query"] = sql_query
14
+ return state
15
+
16
+ return retrieve_drias_data
climateqa/engine/chains/intent_categorization.py CHANGED
@@ -29,7 +29,7 @@ class IntentCategorizer(BaseModel):
29
  Examples:
30
  - ai_impact = Environmental impacts of AI: "What are the environmental impacts of AI", "How does AI affect the environment"
31
  - search = Searching for any quesiton about climate change, energy, biodiversity, nature, and everything we can find the IPCC or IPBES reports or scientific papers,
32
- - chitchat = Any general question that is not related to the environment or climate change or just conversational, or if you don't think searching the IPCC or IPBES reports would be relevant
33
  """,
34
  # - geo_info = Geolocated info about climate change: Any question where the user wants to know localized impacts of climate change, eg: "What will be the temperature in Marseille in 2050"
35
  # - esg = Any question about the ESG regulation, frameworks and standards like the CSRD, TCFD, SASB, GRI, CDP, etc.
@@ -57,6 +57,7 @@ def make_intent_categorization_node(llm):
57
  categorization_chain = make_intent_categorization_chain(llm)
58
 
59
  def categorize_message(state):
 
60
  print("---- Categorize_message ----")
61
 
62
  output = categorization_chain.invoke({"input": state["user_input"]})
 
29
  Examples:
30
  - ai_impact = Environmental impacts of AI: "What are the environmental impacts of AI", "How does AI affect the environment"
31
  - search = Searching for any quesiton about climate change, energy, biodiversity, nature, and everything we can find the IPCC or IPBES reports or scientific papers,
32
+ - chitchat = Any general question that is not related to the environment or climate change or just conversational, or if you don't think searching the IPCC or IPBES reports would be relevant. If it can be interprated as a climate related question, please use the search intent.
33
  """,
34
  # - geo_info = Geolocated info about climate change: Any question where the user wants to know localized impacts of climate change, eg: "What will be the temperature in Marseille in 2050"
35
  # - esg = Any question about the ESG regulation, frameworks and standards like the CSRD, TCFD, SASB, GRI, CDP, etc.
 
57
  categorization_chain = make_intent_categorization_chain(llm)
58
 
59
  def categorize_message(state):
60
+ print("Input Message : ", state["user_input"])
61
  print("---- Categorize_message ----")
62
 
63
  output = categorization_chain.invoke({"input": state["user_input"]})
climateqa/engine/graph.py CHANGED
@@ -23,6 +23,7 @@ from .chains.retrieve_documents import make_IPx_retriever_node, make_POC_retriev
23
  from .chains.answer_rag import make_rag_node
24
  from .chains.graph_retriever import make_graph_retriever_node
25
  from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
 
26
  # from .chains.set_defaults import set_defaults
27
 
28
  class GraphState(TypedDict):
@@ -49,6 +50,8 @@ class GraphState(TypedDict):
49
  recommended_content : List[Document] # OWID Graphs # TODO merge with related_contents
50
  search_only : bool = False
51
  reports : List[str] = []
 
 
52
 
53
  def dummy(state):
54
  return
@@ -240,6 +243,7 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_
240
  answer_rag = make_rag_node(llm, with_docs=True)
241
  answer_rag_no_docs = make_rag_node(llm, with_docs=False)
242
  chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
 
243
 
244
  # Define the nodes
245
  # workflow.add_node("set_defaults", set_defaults)
@@ -258,6 +262,7 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_
258
  workflow.add_node("retrieve_documents", retrieve_documents)
259
  workflow.add_node("answer_rag", answer_rag)
260
  workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
 
261
 
262
  # Entry point
263
  workflow.set_entry_point("categorize_intent")
 
23
  from .chains.answer_rag import make_rag_node
24
  from .chains.graph_retriever import make_graph_retriever_node
25
  from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
26
+ from .chains.drias_retriever import make_drias_retriever_node
27
  # from .chains.set_defaults import set_defaults
28
 
29
  class GraphState(TypedDict):
 
50
  recommended_content : List[Document] # OWID Graphs # TODO merge with related_contents
51
  search_only : bool = False
52
  reports : List[str] = []
53
+ drias_data: pd.DataFrame
54
+ drias_sql_query : str
55
 
56
  def dummy(state):
57
  return
 
243
  answer_rag = make_rag_node(llm, with_docs=True)
244
  answer_rag_no_docs = make_rag_node(llm, with_docs=False)
245
  chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
246
+ # retrieve_drias_data = make_drias_retriever_node(llm) # WIP
247
 
248
  # Define the nodes
249
  # workflow.add_node("set_defaults", set_defaults)
 
262
  workflow.add_node("retrieve_documents", retrieve_documents)
263
  workflow.add_node("answer_rag", answer_rag)
264
  workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
265
+ # workflow.add_node("retrieve_drias_data", retrieve_drias_data)# WIP
266
 
267
  # Entry point
268
  workflow.set_entry_point("categorize_intent")
climateqa/engine/talk_to_data/main.py CHANGED
@@ -19,7 +19,7 @@ VANNA_MODEL = os.getenv('VANNA_MODEL')
19
 
20
  #Vanna object
21
  vn = MyVanna(config = {"temperature": 0, "api_key": OPENAI_API_KEY, 'model': VANNA_MODEL, 'pc_api_key': PC_API_KEY, 'index_name': INDEX_NAME, "top_k" : 4})
22
- db_vanna_path = os.path.join(os.path.dirname(__file__), "database/drias.db")
23
  vn.connect_to_sqlite(db_vanna_path)
24
 
25
  llm = get_llm(provider="openai")
 
19
 
20
  #Vanna object
21
  vn = MyVanna(config = {"temperature": 0, "api_key": OPENAI_API_KEY, 'model': VANNA_MODEL, 'pc_api_key': PC_API_KEY, 'index_name': INDEX_NAME, "top_k" : 4})
22
+ db_vanna_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))), "data/drias/drias.db")
23
  vn.connect_to_sqlite(db_vanna_path)
24
 
25
  llm = get_llm(provider="openai")
climateqa/engine/talk_to_data/myVanna.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ from climateqa.engine.talk_to_data.vanna_class import MyCustomVectorDB
3
+ from vanna.openai import OpenAI_Chat
4
+ import os
5
+
6
+ load_dotenv()
7
+
8
+ OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
9
+
10
+ class MyVanna(MyCustomVectorDB, OpenAI_Chat):
11
+ def __init__(self, config=None):
12
+ MyCustomVectorDB.__init__(self, config=config)
13
+ OpenAI_Chat.__init__(self, config=config)
climateqa/engine/talk_to_data/utils.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import openai
3
+ import pandas as pd
4
+ from geopy.geocoders import Nominatim
5
+ import sqlite3
6
+ import ast
7
+
8
+
9
+ def detect_location_with_openai(api_key, sentence):
10
+ """
11
+ Detects locations in a sentence using OpenAI's API.
12
+ """
13
+ openai.api_key = api_key
14
+
15
+ prompt = f"""
16
+ Extract all locations (cities, countries, states, or geographical areas) mentioned in the following sentence.
17
+ Return the result as a Python list. If no locations are mentioned, return an empty list.
18
+
19
+ Sentence: "{sentence}"
20
+ """
21
+
22
+ response = openai.chat.completions.create(
23
+ model="gpt-4o-mini",
24
+ messages=[
25
+ {"role": "system", "content": "You are a helpful assistant skilled in identifying locations in text."},
26
+ {"role": "user", "content": prompt}
27
+ ],
28
+ max_tokens=100,
29
+ temperature=0
30
+ )
31
+
32
+ return response.choices[0].message.content.split("\n")[1][2:-2]
33
+
34
+
35
+ def detectTable(sql_query):
36
+ pattern = r'(?i)\bFROM\s+((?:`[^`]+`|"[^"]+"|\'[^\']+\'|\w+)(?:\.(?:`[^`]+`|"[^"]+"|\'[^\']+\'|\w+))*)'
37
+ matches = re.findall(pattern, sql_query)
38
+ return matches
39
+
40
+
41
+
42
+ def loc2coords(location : str):
43
+ geolocator = Nominatim(user_agent="city_to_latlong")
44
+ location = geolocator.geocode(location)
45
+ return (location.latitude, location.longitude)
46
+
47
+
48
+ def coords2loc(coords : tuple):
49
+ geolocator = Nominatim(user_agent="coords_to_city")
50
+ try:
51
+ location = geolocator.reverse(coords)
52
+ return location.address
53
+ except Exception as e:
54
+ print(f"Error: {e}")
55
+ return "Unknown Location"
56
+
57
+
58
+ def nearestNeighbourSQL(db: str, location: tuple, table : str):
59
+ conn = sqlite3.connect(db)
60
+ long = round(location[1], 3)
61
+ lat = round(location[0], 3)
62
+ cursor = conn.cursor()
63
+ cursor.execute(f"SELECT lat, lon FROM {table} WHERE lat BETWEEN {lat - 0.3} AND {lat + 0.3} AND lon BETWEEN {long - 0.3} AND {long + 0.3}")
64
+ results = cursor.fetchall()
65
+ return results[0]
66
+
67
+ def detect_relevant_tables(user_question, llm):
68
+ table_names_list = [
69
+ "Frequency_of_rainy_days_index",
70
+ "Winter_precipitation_total",
71
+ "Summer_precipitation_total",
72
+ "Annual_precipitation_total",
73
+ # "Remarkable_daily_precipitation_total_(Q99)",
74
+ "Frequency_of_remarkable_daily_precipitation",
75
+ "Extreme_precipitation_intensity",
76
+ "Mean_winter_temperature",
77
+ "Mean_summer_temperature",
78
+ "Number_of_tropical_nights",
79
+ "Maximum_summer_temperature",
80
+ "Number_of_days_with_Tx_above_30C",
81
+ "Number_of_days_with_Tx_above_35C",
82
+ "Drought_index"
83
+ ]
84
+ prompt = (
85
+ f"You are helping to build a sql query to retrieve relevant data for a user question."
86
+ f"The different tables are {table_names_list}."
87
+ f"The user question is {user_question}. Write the relevant tables to use. Answer only a python list of table name."
88
+ )
89
+ table_names = ast.literal_eval(llm.invoke(prompt).content.strip("```python\n").strip())
90
+ return table_names
91
+
92
+ def replace_coordonates(coords, query, coords_tables):
93
+ n = query.count(str(coords[0]))
94
+
95
+ for i in range(n):
96
+ query = query.replace(str(coords[0]), str(coords_tables[i][0]),1)
97
+ query = query.replace(str(coords[1]), str(coords_tables[i][1]),1)
98
+ return query
climateqa/engine/talk_to_data/vanna_class.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from vanna.base import VannaBase
2
+ from pinecone import Pinecone
3
+ from climateqa.engine.embeddings import get_embeddings_function
4
+ import pandas as pd
5
+ import hashlib
6
+
7
+ class MyCustomVectorDB(VannaBase):
8
+
9
+ """
10
+ VectorDB class for storing and retrieving vectors from Pinecone.
11
+
12
+ args :
13
+ config (dict) : Configuration dictionary containing the Pinecone API key and the index name :
14
+ - pc_api_key (str) : Pinecone API key
15
+ - index_name (str) : Pinecone index name
16
+ - top_k (int) : Number of top results to return (default = 2)
17
+
18
+ """
19
+
20
+ def __init__(self,config):
21
+ super().__init__(config = config)
22
+ try :
23
+ self.api_key = config.get('pc_api_key')
24
+ self.index_name = config.get('index_name')
25
+ except :
26
+ raise Exception("Please provide the Pinecone API key and the index name")
27
+
28
+ self.pc = Pinecone(api_key = self.api_key)
29
+ self.index = self.pc.Index(self.index_name)
30
+ self.top_k = config.get('top_k', 2)
31
+ self.embeddings = get_embeddings_function()
32
+
33
+
34
+ def check_embedding(self, id, namespace):
35
+ fetched = self.index.fetch(ids = [id], namespace = namespace)
36
+ if fetched['vectors'] == {}:
37
+ return False
38
+ return True
39
+
40
+ def generate_hash_id(self, data: str) -> str:
41
+ """
42
+ Generate a unique hash ID for the given data.
43
+
44
+ Args:
45
+ data (str): The input data to hash (e.g., a concatenated string of user attributes).
46
+
47
+ Returns:
48
+ str: A unique hash ID as a hexadecimal string.
49
+ """
50
+
51
+ data_bytes = data.encode('utf-8')
52
+ hash_object = hashlib.sha256(data_bytes)
53
+ hash_id = hash_object.hexdigest()
54
+
55
+ return hash_id
56
+
57
+ def add_ddl(self, ddl: str, **kwargs) -> str:
58
+ id = self.generate_hash_id(ddl) + '_ddl'
59
+
60
+ if self.check_embedding(id, 'ddl'):
61
+ print(f"DDL having id {id} already exists")
62
+ return id
63
+
64
+ self.index.upsert(
65
+ vectors = [(id, self.embeddings.embed_query(ddl), {'ddl': ddl})],
66
+ namespace = 'ddl'
67
+ )
68
+
69
+ return id
70
+
71
+ def add_documentation(self, doc: str, **kwargs) -> str:
72
+ id = self.generate_hash_id(doc) + '_doc'
73
+
74
+ if self.check_embedding(id, 'documentation'):
75
+ print(f"Documentation having id {id} already exists")
76
+ return id
77
+
78
+ self.index.upsert(
79
+ vectors = [(id, self.embeddings.embed_query(doc), {'doc': doc})],
80
+ namespace = 'documentation'
81
+ )
82
+
83
+ return id
84
+
85
+ def add_question_sql(self, question: str, sql: str, **kwargs) -> str:
86
+ id = self.generate_hash_id(question) + '_sql'
87
+
88
+ if self.check_embedding(id, 'question_sql'):
89
+ print(f"Question-SQL pair having id {id} already exists")
90
+ return id
91
+
92
+ self.index.upsert(
93
+ vectors = [(id, self.embeddings.embed_query(question + sql), {'question': question, 'sql': sql})],
94
+ namespace = 'question_sql'
95
+ )
96
+
97
+ return id
98
+
99
+ def get_related_ddl(self, question: str, **kwargs) -> list:
100
+ res = self.index.query(
101
+ vector=self.embeddings.embed_query(question),
102
+ top_k=self.top_k,
103
+ namespace='ddl',
104
+ include_metadata=True
105
+ )
106
+
107
+ return [match['metadata']['ddl'] for match in res['matches']]
108
+
109
+ def get_related_documentation(self, question: str, **kwargs) -> list:
110
+ res = self.index.query(
111
+ vector=self.embeddings.embed_query(question),
112
+ top_k=self.top_k,
113
+ namespace='documentation',
114
+ include_metadata=True
115
+ )
116
+
117
+ return [match['metadata']['doc'] for match in res['matches']]
118
+
119
+ def get_similar_question_sql(self, question: str, **kwargs) -> list:
120
+ res = self.index.query(
121
+ vector=self.embeddings.embed_query(question),
122
+ top_k=self.top_k,
123
+ namespace='question_sql',
124
+ include_metadata=True
125
+ )
126
+
127
+ return [(match['metadata']['question'], match['metadata']['sql']) for match in res['matches']]
128
+
129
+ def get_training_data(self, **kwargs) -> pd.DataFrame:
130
+
131
+ list_of_data = []
132
+
133
+ namespaces = ['ddl', 'documentation', 'question_sql']
134
+
135
+ for namespace in namespaces:
136
+
137
+ data = self.index.query(
138
+ top_k=10000,
139
+ namespace=namespace,
140
+ include_metadata=True,
141
+ include_values=False
142
+ )
143
+
144
+ for match in data['matches']:
145
+ list_of_data.append(match['metadata'])
146
+
147
+ return pd.DataFrame(list_of_data)
148
+
149
+
150
+
151
+ def remove_training_data(self, id: str, **kwargs) -> bool:
152
+ if id.endswith("_ddl"):
153
+ self.Index.delete(ids=[id], namespace="_ddl")
154
+ return True
155
+ if id.endswith("_sql"):
156
+ self.index.delete(ids=[id], namespace="_sql")
157
+ return True
158
+
159
+ if id.endswith("_doc"):
160
+ self.Index.delete(ids=[id], namespace="_doc")
161
+ return True
162
+
163
+ return False
164
+
165
+ def generate_embedding(self, text, **kwargs):
166
+ # Implement the method here
167
+ pass
168
+
169
+
170
+ def get_sql_prompt(
171
+ self,
172
+ initial_prompt : str,
173
+ question: str,
174
+ question_sql_list: list,
175
+ ddl_list: list,
176
+ doc_list: list,
177
+ **kwargs,
178
+ ):
179
+ """
180
+ Example:
181
+ ```python
182
+ vn.get_sql_prompt(
183
+ question="What are the top 10 customers by sales?",
184
+ question_sql_list=[{"question": "What are the top 10 customers by sales?", "sql": "SELECT * FROM customers ORDER BY sales DESC LIMIT 10"}],
185
+ ddl_list=["CREATE TABLE customers (id INT, name TEXT, sales DECIMAL)"],
186
+ doc_list=["The customers table contains information about customers and their sales."],
187
+ )
188
+
189
+ ```
190
+
191
+ This method is used to generate a prompt for the LLM to generate SQL.
192
+
193
+ Args:
194
+ question (str): The question to generate SQL for.
195
+ question_sql_list (list): A list of questions and their corresponding SQL statements.
196
+ ddl_list (list): A list of DDL statements.
197
+ doc_list (list): A list of documentation.
198
+
199
+ Returns:
200
+ any: The prompt for the LLM to generate SQL.
201
+ """
202
+
203
+ if initial_prompt is None:
204
+ initial_prompt = f"You are a {self.dialect} expert. " + \
205
+ "Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions. "
206
+
207
+ initial_prompt = self.add_ddl_to_prompt(
208
+ initial_prompt, ddl_list, max_tokens=self.max_tokens
209
+ )
210
+
211
+ if self.static_documentation != "":
212
+ doc_list.append(self.static_documentation)
213
+
214
+ initial_prompt = self.add_documentation_to_prompt(
215
+ initial_prompt, doc_list, max_tokens=self.max_tokens
216
+ )
217
+
218
+ # initial_prompt = self.add_sql_to_prompt(
219
+ # initial_prompt, question_sql_list, max_tokens=self.max_tokens
220
+ # )
221
+
222
+
223
+ initial_prompt += (
224
+ "===Response Guidelines \n"
225
+ "1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question. \n"
226
+ "2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql \n"
227
+ "3. If the provided context is insufficient, please give a sql query based on your knowledge and the context provided. \n"
228
+ "4. Please use the most relevant table(s). \n"
229
+ "5. If the question has been asked and answered before, please repeat the answer exactly as it was given before. \n"
230
+ f"6. Ensure that the output SQL is {self.dialect}-compliant and executable, and free of syntax errors. \n"
231
+ f"7. Add a description of the table in the result of the sql query, if relevant. \n"
232
+ "8 Make sure to include the relevant KPI in the SQL query. The query should return impactfull data \n"
233
+ # f"8. If a set of latitude,longitude is provided, make a intermediate query to find the nearest value in the table and replace the coordinates in the sql query. \n"
234
+ # "7. Add a description of the table in the result of the sql query."
235
+ # "7. If the question is about a specific latitude, longitude, query an interval of 0.3 and keep only the first set of coordinate. \n"
236
+ # "7. Table names should be included in the result of the sql query. Use for example Mean_winter_temperature AS table_name in the query \n"
237
+ )
238
+
239
+
240
+ message_log = [self.system_message(initial_prompt)]
241
+
242
+ for example in question_sql_list:
243
+ if example is None:
244
+ print("example is None")
245
+ else:
246
+ if example is not None and "question" in example and "sql" in example:
247
+ message_log.append(self.user_message(example["question"]))
248
+ message_log.append(self.assistant_message(example["sql"]))
249
+
250
+ message_log.append(self.user_message(question))
251
+
252
+ return message_log
253
+
254
+
255
+ # def get_sql_prompt(
256
+ # self,
257
+ # initial_prompt : str,
258
+ # question: str,
259
+ # question_sql_list: list,
260
+ # ddl_list: list,
261
+ # doc_list: list,
262
+ # **kwargs,
263
+ # ):
264
+ # """
265
+ # Example:
266
+ # ```python
267
+ # vn.get_sql_prompt(
268
+ # question="What are the top 10 customers by sales?",
269
+ # question_sql_list=[{"question": "What are the top 10 customers by sales?", "sql": "SELECT * FROM customers ORDER BY sales DESC LIMIT 10"}],
270
+ # ddl_list=["CREATE TABLE customers (id INT, name TEXT, sales DECIMAL)"],
271
+ # doc_list=["The customers table contains information about customers and their sales."],
272
+ # )
273
+
274
+ # ```
275
+
276
+ # This method is used to generate a prompt for the LLM to generate SQL.
277
+
278
+ # Args:
279
+ # question (str): The question to generate SQL for.
280
+ # question_sql_list (list): A list of questions and their corresponding SQL statements.
281
+ # ddl_list (list): A list of DDL statements.
282
+ # doc_list (list): A list of documentation.
283
+
284
+ # Returns:
285
+ # any: The prompt for the LLM to generate SQL.
286
+ # """
287
+
288
+ # if initial_prompt is None:
289
+ # initial_prompt = f"You are a {self.dialect} expert. " + \
290
+ # "Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions. "
291
+
292
+ # initial_prompt = self.add_ddl_to_prompt(
293
+ # initial_prompt, ddl_list, max_tokens=self.max_tokens
294
+ # )
295
+
296
+ # if self.static_documentation != "":
297
+ # doc_list.append(self.static_documentation)
298
+
299
+ # initial_prompt = self.add_documentation_to_prompt(
300
+ # initial_prompt, doc_list, max_tokens=self.max_tokens
301
+ # )
302
+
303
+ # initial_prompt += (
304
+ # "===Response Guidelines \n"
305
+ # "1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question. \n"
306
+ # "2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql \n"
307
+ # "3. If the provided context is insufficient, please explain why it can't be generated. \n"
308
+ # "4. Please use the most relevant table(s). \n"
309
+ # "5. If the question has been asked and answered before, please repeat the answer exactly as it was given before. \n"
310
+ # f"6. Ensure that the output SQL is {self.dialect}-compliant and executable, and free of syntax errors. \n"
311
+ # )
312
+
313
+ # message_log = [self.system_message(initial_prompt)]
314
+
315
+ # for example in question_sql_list:
316
+ # if example is None:
317
+ # print("example is None")
318
+ # else:
319
+ # if example is not None and "question" in example and "sql" in example:
320
+ # message_log.append(self.user_message(example["question"]))
321
+ # message_log.append(self.assistant_message(example["sql"]))
322
+
323
+ # message_log.append(self.user_message(question))
324
+
325
+ # return message_log
front/tabs/tab_papers.py CHANGED
@@ -3,6 +3,8 @@ from gradio_modal import Modal
3
 
4
 
5
  def create_papers_tab():
 
 
6
  with gr.Accordion(
7
  visible=True,
8
  elem_id="papers-summary-popup",
@@ -32,5 +34,5 @@ def create_papers_tab():
32
  papers_modal
33
  )
34
 
35
- return papers_summary, papers_html, citations_network, papers_modal
36
 
 
3
 
4
 
5
  def create_papers_tab():
6
+ direct_search_textbox = gr.Textbox(label="Direct search for papers", placeholder= "What is climate change ?", elem_id="papers-search")
7
+
8
  with gr.Accordion(
9
  visible=True,
10
  elem_id="papers-summary-popup",
 
34
  papers_modal
35
  )
36
 
37
+ return direct_search_textbox, papers_summary, papers_html, citations_network, papers_modal
38
 
requirements.txt CHANGED
@@ -19,3 +19,5 @@ langchain-community==0.2
19
  msal==1.31
20
  matplotlib==3.9.2
21
  gradio-modal==0.0.4
 
 
 
19
  msal==1.31
20
  matplotlib==3.9.2
21
  gradio-modal==0.0.4
22
+ vanna==0.7.5
23
+ geopy==2.4.1
sandbox/20241104 - CQA - StepByStep CQA.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
sandbox/talk_to_data/20250306 - CQA - Drias.ipynb ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Import the function in main.py"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": null,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "import sys\n",
17
+ "import os\n",
18
+ "sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))\n",
19
+ "\n",
20
+ "%load_ext autoreload\n",
21
+ "%autoreload 2\n",
22
+ "\n",
23
+ "from climateqa.engine.talk_to_data.main import ask_vanna\n"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "markdown",
28
+ "metadata": {},
29
+ "source": [
30
+ "## Create a human query"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": null,
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "# query = \"Compare the winter and summer precipitation in 2050 in Marseille\"\n",
40
+ "# query = \"What is the impact of climate in Bordeaux?\"\n",
41
+ "# query = \"what is the number of days where the temperature above 35 in 2050 in Marseille\"\n",
42
+ "# query = \"Quelle sera la température à Marseille sur les prochaines années ?\"\n",
43
+ "# query = \"Comment vont évoluer les températures à Marseille ?\"\n",
44
+ "query = \"Comment vont évoluer les températures à marseille ?\""
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "markdown",
49
+ "metadata": {},
50
+ "source": [
51
+ "## Call the function ask vanna, it gives an output of a the sql query and the dataframe of the result (tuple)"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "sql_query, df, fig = ask_vanna(query)\n",
61
+ "print(df.head())\n",
62
+ "fig.show()"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": []
71
+ }
72
+ ],
73
+ "metadata": {
74
+ "kernelspec": {
75
+ "display_name": "climateqa",
76
+ "language": "python",
77
+ "name": "python3"
78
+ },
79
+ "language_info": {
80
+ "codemirror_mode": {
81
+ "name": "ipython",
82
+ "version": 3
83
+ },
84
+ "file_extension": ".py",
85
+ "mimetype": "text/x-python",
86
+ "name": "python",
87
+ "nbconvert_exporter": "python",
88
+ "pygments_lexer": "ipython3",
89
+ "version": "3.11.9"
90
+ }
91
+ },
92
+ "nbformat": 4,
93
+ "nbformat_minor": 2
94
+ }
sandbox/talk_to_data/20250306 - CQA - Step_by_step_vanna.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
style.css CHANGED
@@ -481,14 +481,13 @@ a {
481
  max-height: calc(100vh - 190px) !important;
482
  overflow: hidden;
483
  }
484
-
485
  div#tab-examples,
486
  div#sources-textbox,
487
  div#tab-config {
488
  height: calc(100vh - 190px) !important;
489
  overflow-y: scroll !important;
490
  }
491
-
492
  div#sources-figures,
493
  div#graphs-container,
494
  div#tab-citations {
@@ -606,3 +605,16 @@ a {
606
  #checkbox-config:checked {
607
  display: block;
608
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481
  max-height: calc(100vh - 190px) !important;
482
  overflow: hidden;
483
  }
 
484
  div#tab-examples,
485
  div#sources-textbox,
486
  div#tab-config {
487
  height: calc(100vh - 190px) !important;
488
  overflow-y: scroll !important;
489
  }
490
+ div#tab-vanna,
491
  div#sources-figures,
492
  div#graphs-container,
493
  div#tab-citations {
 
605
  #checkbox-config:checked {
606
  display: block;
607
  }
608
+
609
+ #vanna-display {
610
+ max-height: 300px;
611
+ /* overflow-y: scroll; */
612
+ }
613
+ #sql-query{
614
+ max-height: 100px;
615
+ overflow-y:scroll;
616
+ }
617
+ #vanna-details{
618
+ max-height: 500px;
619
+ overflow-y:scroll;
620
+ }