TheoLvs commited on
Commit
8edfef8
·
1 Parent(s): a56e564

Added routing to avoid answering when we don't find docs

Browse files
Files changed (3) hide show
  1. app.py +7 -6
  2. climateqa/engine/prompts.py +18 -0
  3. climateqa/engine/rag.py +18 -4
app.py CHANGED
@@ -347,6 +347,7 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
347
  examples_per_page=8,
348
  run_on_click=False,
349
  elem_id=f"examples{i}",
 
350
  # label = "Click on the example question or enter your own",
351
  # cache_examples=True,
352
  )
@@ -400,15 +401,15 @@ with gr.Blocks(title="Climate Q&A", css="style.css", theme=theme,elem_id = "main
400
  return (gr.update(interactive = True,value = ""))
401
 
402
  (textbox
403
- .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False)
404
- .success(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery],concurrency_limit = 8)
405
- .success(finish_chat, None, [textbox])
406
  )
407
 
408
  (examples_hidden
409
- .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False)
410
- .success(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery],concurrency_limit = 8)
411
- .success(finish_chat, None, [textbox])
412
  )
413
 
414
 
 
347
  examples_per_page=8,
348
  run_on_click=False,
349
  elem_id=f"examples{i}",
350
+ api_name=f"examples{i}",
351
  # label = "Click on the example question or enter your own",
352
  # cache_examples=True,
353
  )
 
401
  return (gr.update(interactive = True,value = ""))
402
 
403
  (textbox
404
+ .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
405
+ .success(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery],concurrency_limit = 8,api_name = "chat_textbox")
406
+ .success(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
407
  )
408
 
409
  (examples_hidden
410
+ .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
411
+ .success(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery],concurrency_limit = 8,api_name = "chat_examples")
412
+ .success(finish_chat, None, [textbox],api_name = "finish_chat_examples")
413
  )
414
 
415
 
climateqa/engine/prompts.py CHANGED
@@ -48,6 +48,7 @@ Guidelines:
48
  - If it makes sense, use bullet points and lists to make your answers easier to understand.
49
  - You do not need to use every passage. Only use the ones that help answer the question.
50
  - If the documents do not have the information needed to answer the question, just say you do not have enough information.
 
51
 
52
  -----------------------
53
  Passages:
@@ -59,6 +60,23 @@ Answer in {language} with the passages citations:
59
  """
60
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  audience_prompts = {
63
  "children": "6 year old children that don't know anything about science and climate change and need metaphors to learn",
64
  "general": "the general public who know the basics in science and climate change and want to learn more about it without technical terms. Still use references to passages.",
 
48
  - If it makes sense, use bullet points and lists to make your answers easier to understand.
49
  - You do not need to use every passage. Only use the ones that help answer the question.
50
  - If the documents do not have the information needed to answer the question, just say you do not have enough information.
51
+ - Consider by default that the question is about the past century unless it is specified otherwise.
52
 
53
  -----------------------
54
  Passages:
 
60
  """
61
 
62
 
63
+ answer_prompt_without_docs_template = """
64
+ You are ClimateQ&A, an AI Assistant created by Ekimetrics. Your role is to explain climate-related questions using info from the IPCC and/or IPBES reports.
65
+ Always stay true to climate science and do not make up information. If you do not know the answer, just say you do not know.
66
+ If the
67
+
68
+ Guidelines:
69
+ - Start by explaining clearly that you could not find the answer in the IPCC/IPBES reports, so your answer is based on your own knowledge and must be taken with great caution because it's AI generated.
70
+ - Also explain that the user should reformulate the question to be more specific to the IPCC/IPBES reports
71
+ - Because your role is to explain climate science, you can never be skeptical about climate change.
72
+ - If the question is not related to environmental issues, never never answer it. Say it's not your role.
73
+
74
+ Question: {question} - Explained to {audience}
75
+ Answer in {language}:
76
+ """
77
+
78
+
79
+
80
  audience_prompts = {
81
  "children": "6 year old children that don't know anything about science and climate change and need metaphors to learn",
82
  "general": "the general public who know the basics in science and climate change and want to learn more about it without technical terms. Still use references to passages.",
climateqa/engine/rag.py CHANGED
@@ -2,12 +2,12 @@ from operator import itemgetter
2
 
3
  from langchain.prompts import ChatPromptTemplate
4
  from langchain.schema.output_parser import StrOutputParser
5
- from langchain.schema.runnable import RunnablePassthrough, RunnableLambda
6
  from langchain.prompts.prompt import PromptTemplate
7
  from langchain.schema import format_document
8
 
9
  from climateqa.engine.reformulation import make_reformulation_chain
10
- from climateqa.engine.prompts import answer_prompt_template
11
  from climateqa.engine.utils import pass_values, flatten_dict
12
 
13
  DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
@@ -24,7 +24,7 @@ def make_rag_chain(retriever,llm):
24
 
25
  # Construct the prompt
26
  prompt = ChatPromptTemplate.from_template(answer_prompt_template)
27
-
28
 
29
  # ------- CHAIN 0 - Reformulation
30
  reformulation_chain = make_reformulation_chain(llm)
@@ -51,11 +51,25 @@ def make_rag_chain(retriever,llm):
51
  }
52
 
53
  # Generate the answer
54
- answer = {
 
 
 
55
  "answer": input_documents | prompt | llm | StrOutputParser(),
56
  **pass_values(["question","audience","language","query","docs"])
57
  }
58
 
 
 
 
 
 
 
 
 
 
 
 
59
  # ------- FINAL CHAIN
60
  # Build the final chain
61
  rag_chain = reformulation | find_documents | answer
 
2
 
3
  from langchain.prompts import ChatPromptTemplate
4
  from langchain.schema.output_parser import StrOutputParser
5
+ from langchain.schema.runnable import RunnablePassthrough, RunnableLambda, RunnableBranch
6
  from langchain.prompts.prompt import PromptTemplate
7
  from langchain.schema import format_document
8
 
9
  from climateqa.engine.reformulation import make_reformulation_chain
10
+ from climateqa.engine.prompts import answer_prompt_template,answer_prompt_without_docs_template
11
  from climateqa.engine.utils import pass_values, flatten_dict
12
 
13
  DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
 
24
 
25
  # Construct the prompt
26
  prompt = ChatPromptTemplate.from_template(answer_prompt_template)
27
+ prompt_without_docs = ChatPromptTemplate.from_template(answer_prompt_without_docs_template)
28
 
29
  # ------- CHAIN 0 - Reformulation
30
  reformulation_chain = make_reformulation_chain(llm)
 
51
  }
52
 
53
  # Generate the answer
54
+
55
+
56
+
57
+ answer_with_docs = {
58
  "answer": input_documents | prompt | llm | StrOutputParser(),
59
  **pass_values(["question","audience","language","query","docs"])
60
  }
61
 
62
+ answer_without_docs = {
63
+ "answer": prompt_without_docs | llm | StrOutputParser(),
64
+ **pass_values(["question","audience","language","query","docs"])
65
+ }
66
+
67
+ answer = RunnableBranch(
68
+ (lambda x: len(x["docs"]) > 0, answer_with_docs),
69
+ answer_without_docs,
70
+ )
71
+
72
+
73
  # ------- FINAL CHAIN
74
  # Build the final chain
75
  rag_chain = reformulation | find_documents | answer