ElPremOoO commited on
Commit
175968e
·
verified ·
1 Parent(s): c3e3e66

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +26 -24
main.py CHANGED
@@ -22,38 +22,40 @@ def home():
22
  return request.url
23
 
24
 
25
- @app.route("/predict", methods=["POST"])
 
26
  def predict():
27
- try:
28
- # Debugging: print input code to check if the request is received correctly
29
- print("Received code:", request.get_json()["code"])
 
30
 
31
- data = request.get_json()
32
- if "code" not in data:
33
- return jsonify({"error": "Missing 'code' parameter"}), 400
34
 
35
- code_input = data["code"]
36
 
37
- # Tokenize the input code using the CodeBERT tokenizer
38
- inputs = tokenizer(
39
- code_input,
40
- return_tensors='pt',
41
- truncation=True,
42
- padding='max_length',
43
- max_length=512
44
- )
45
 
46
- # Make prediction using the model
47
- with torch.no_grad():
48
- outputs = model(**inputs)
49
- prediction = outputs.logits.squeeze().item() # Extract the predicted score (single float)
50
 
51
- print(f"Predicted score: {prediction}") # Debugging: Print prediction
52
 
53
- return jsonify({"predicted_score": prediction})
54
 
55
- except Exception as e:
56
- return jsonify({"error": str(e)}), 500
57
 
58
 
59
  # Run the Flask app
 
22
  return request.url
23
 
24
 
25
+ # @app.route("/predict", methods=["POST"])
26
+ @app.route("/predict")
27
  def predict():
28
+ return "predicted brooo"
29
+ # try:
30
+ # # Debugging: print input code to check if the request is received correctly
31
+ # print("Received code:", request.get_json()["code"])
32
 
33
+ # data = request.get_json()
34
+ # if "code" not in data:
35
+ # return jsonify({"error": "Missing 'code' parameter"}), 400
36
 
37
+ # code_input = data["code"]
38
 
39
+ # # Tokenize the input code using the CodeBERT tokenizer
40
+ # inputs = tokenizer(
41
+ # code_input,
42
+ # return_tensors='pt',
43
+ # truncation=True,
44
+ # padding='max_length',
45
+ # max_length=512
46
+ # )
47
 
48
+ # # Make prediction using the model
49
+ # with torch.no_grad():
50
+ # outputs = model(**inputs)
51
+ # prediction = outputs.logits.squeeze().item() # Extract the predicted score (single float)
52
 
53
+ # print(f"Predicted score: {prediction}") # Debugging: Print prediction
54
 
55
+ # return jsonify({"predicted_score": prediction})
56
 
57
+ # except Exception as e:
58
+ # return jsonify({"error": str(e)}), 500
59
 
60
 
61
  # Run the Flask app