Spaces:
Runtime error
Runtime error
Update server.py
Browse files
server.py
CHANGED
@@ -1,13 +1,14 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
-
import subprocess
|
6 |
-
import tempfile
|
7 |
-
import os
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
|
|
|
|
11 |
# Load DeepSeek-Coder-V2-Base Model
|
12 |
model_name = "deepseek-ai/DeepSeek-Coder-V2-Base"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -16,9 +17,6 @@ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float
|
|
16 |
class CodeRequest(BaseModel):
|
17 |
user_story: str
|
18 |
|
19 |
-
class TestRequest(BaseModel):
|
20 |
-
code: str
|
21 |
-
|
22 |
@app.post("/generate-code")
|
23 |
def generate_code(request: CodeRequest):
|
24 |
"""Generates code based on user story"""
|
@@ -30,37 +28,6 @@ def generate_code(request: CodeRequest):
|
|
30 |
|
31 |
return {"generated_code": generated_code}
|
32 |
|
33 |
-
@app.post("/test-code")
|
34 |
-
def test_code(request: TestRequest):
|
35 |
-
"""Runs automated testing on the generated code"""
|
36 |
-
try:
|
37 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".py") as temp_file:
|
38 |
-
temp_file.write(request.code.encode())
|
39 |
-
temp_file.close()
|
40 |
-
|
41 |
-
result = subprocess.run(["pytest", temp_file.name], capture_output=True, text=True)
|
42 |
-
os.unlink(temp_file.name)
|
43 |
-
|
44 |
-
if result.returncode == 0:
|
45 |
-
return {"test_status": "All tests passed!"}
|
46 |
-
else:
|
47 |
-
return {"test_status": "Test failed!", "details": result.stderr}
|
48 |
-
|
49 |
-
except Exception as e:
|
50 |
-
raise HTTPException(status_code=500, detail=str(e))
|
51 |
-
|
52 |
-
@app.get("/execute-code")
|
53 |
-
def execute_code():
|
54 |
-
"""Executes AI-generated code"""
|
55 |
-
sample_code = "print('Hello from AI-generated code!')"
|
56 |
-
|
57 |
-
try:
|
58 |
-
result = subprocess.run(["python3", "-c", sample_code], capture_output=True, text=True)
|
59 |
-
return {"status": "Execution successful!", "output": result.stdout}
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
return {"status": "Execution failed!", "error": str(e)}
|
63 |
-
|
64 |
if __name__ == "__main__":
|
65 |
import uvicorn
|
66 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
import os
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
|
|
|
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Fix: Set a writable cache directory
|
10 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
11 |
+
|
12 |
# Load DeepSeek-Coder-V2-Base Model
|
13 |
model_name = "deepseek-ai/DeepSeek-Coder-V2-Base"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
17 |
class CodeRequest(BaseModel):
|
18 |
user_story: str
|
19 |
|
|
|
|
|
|
|
20 |
@app.post("/generate-code")
|
21 |
def generate_code(request: CodeRequest):
|
22 |
"""Generates code based on user story"""
|
|
|
28 |
|
29 |
return {"generated_code": generated_code}
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if __name__ == "__main__":
|
32 |
import uvicorn
|
33 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|