Spaces:
Runtime error
Runtime error
Update server.py
Browse files
server.py
CHANGED
@@ -3,33 +3,28 @@ from fastapi import FastAPI, HTTPException
|
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
6 |
-
import subprocess
|
7 |
-
import tempfile
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
# β
Fix: Use `/tmp` as cache directory (
|
12 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
13 |
os.environ["HF_HOME"] = "/tmp"
|
14 |
|
15 |
-
# β
Ensure
|
16 |
if not os.path.exists("/tmp"):
|
17 |
os.makedirs("/tmp")
|
18 |
|
19 |
-
# β
Load
|
20 |
model_name = "deepseek-ai/DeepSeek-Coder-V2-Base"
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
23 |
|
24 |
class CodeRequest(BaseModel):
|
25 |
user_story: str
|
26 |
|
27 |
-
class TestRequest(BaseModel):
|
28 |
-
code: str
|
29 |
-
|
30 |
@app.post("/generate-code")
|
31 |
def generate_code(request: CodeRequest):
|
32 |
-
"""Generates AI-powered
|
33 |
prompt = f"Generate structured code for: {request.user_story}"
|
34 |
|
35 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -38,37 +33,6 @@ def generate_code(request: CodeRequest):
|
|
38 |
|
39 |
return {"generated_code": generated_code}
|
40 |
|
41 |
-
@app.post("/test-code")
|
42 |
-
def test_code(request: TestRequest):
|
43 |
-
"""Runs automated testing on AI-generated code"""
|
44 |
-
try:
|
45 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".py", dir="/tmp") as temp_file:
|
46 |
-
temp_file.write(request.code.encode())
|
47 |
-
temp_file.close()
|
48 |
-
|
49 |
-
result = subprocess.run(["pytest", temp_file.name], capture_output=True, text=True)
|
50 |
-
os.unlink(temp_file.name)
|
51 |
-
|
52 |
-
if result.returncode == 0:
|
53 |
-
return {"test_status": "All tests passed!"}
|
54 |
-
else:
|
55 |
-
return {"test_status": "Test failed!", "details": result.stderr}
|
56 |
-
|
57 |
-
except Exception as e:
|
58 |
-
raise HTTPException(status_code=500, detail=str(e))
|
59 |
-
|
60 |
-
@app.get("/execute-code")
|
61 |
-
def execute_code():
|
62 |
-
"""Executes AI-generated code and returns output"""
|
63 |
-
sample_code = "print('Hello from AI-generated code!')"
|
64 |
-
|
65 |
-
try:
|
66 |
-
result = subprocess.run(["python3", "-c", sample_code], capture_output=True, text=True)
|
67 |
-
return {"status": "Execution successful!", "output": result.stdout}
|
68 |
-
|
69 |
-
except Exception as e:
|
70 |
-
return {"status": "Execution failed!", "error": str(e)}
|
71 |
-
|
72 |
if __name__ == "__main__":
|
73 |
import uvicorn
|
74 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# β
Fix: Use `/tmp` as the cache directory (Hugging Face Spaces allows writing here)
|
10 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
11 |
os.environ["HF_HOME"] = "/tmp"
|
12 |
|
13 |
+
# β
Ensure the `/tmp` directory exists
|
14 |
if not os.path.exists("/tmp"):
|
15 |
os.makedirs("/tmp")
|
16 |
|
17 |
+
# β
Load DeepSeek-Coder-V2-Base Model with correct cache directory
|
18 |
model_name = "deepseek-ai/DeepSeek-Coder-V2-Base"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp")
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", cache_dir="/tmp")
|
21 |
|
22 |
class CodeRequest(BaseModel):
|
23 |
user_story: str
|
24 |
|
|
|
|
|
|
|
25 |
@app.post("/generate-code")
|
26 |
def generate_code(request: CodeRequest):
|
27 |
+
"""Generates structured AI-powered code based on user story"""
|
28 |
prompt = f"Generate structured code for: {request.user_story}"
|
29 |
|
30 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
33 |
|
34 |
return {"generated_code": generated_code}
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
if __name__ == "__main__":
|
37 |
import uvicorn
|
38 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|