Spaces:
Runtime error
Runtime error
commit app files
Browse files- .gitattributes +1 -0
- app.py +72 -0
- examples/2582289.jpg +0 -0
- examples/3622237.jpg +0 -0
- examples/592799.jpg +0 -0
- model.py +33 -0
- pretrained_effnetb1_feature_extractor_pizza_steak_sushi_20_percent.pth +3 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
pretrained_effnetb1_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import create_effnetb1_model
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
|
10 |
+
# Setup class names
|
11 |
+
class_names = ["pizza", "steak", "sushi"]
|
12 |
+
|
13 |
+
### 2. Model and transforms preparation ###
|
14 |
+
|
15 |
+
# Create EffNetB2 model
|
16 |
+
effnetb1, effnetb1_transforms = create_effnetb1_model(num_classes=len(class_names) )
|
17 |
+
|
18 |
+
# Load saved weights
|
19 |
+
effnetb1.load_state_dict(torch.load(f="pretrained_effnetb1_feature_extractor_pizza_steak_sushi_20_percent.pth",
|
20 |
+
map_location=torch.device("cpu"),))
|
21 |
+
### 3. Predict function ###
|
22 |
+
# Create predict function
|
23 |
+
def predict(img) -> Tuple[Dict, float]:
|
24 |
+
"""
|
25 |
+
Transforms and performs a prediction on img.
|
26 |
+
:param img: target image .
|
27 |
+
:return: prediction and time taken.
|
28 |
+
"""
|
29 |
+
# Start the timer
|
30 |
+
start_time = timer()
|
31 |
+
|
32 |
+
# Transform the target image and add a batch dimension
|
33 |
+
img = effnetb1_transforms(img).unsqueeze(0)
|
34 |
+
|
35 |
+
# Put model into evaluation mode and turn on inference mode
|
36 |
+
effnetb1.eval()
|
37 |
+
with torch.inference_mode():
|
38 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
39 |
+
pred_probs = torch.softmax(effnetb1(img), dim=1)
|
40 |
+
|
41 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
42 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
43 |
+
|
44 |
+
# Calculate the prediction time
|
45 |
+
pred_time = round(timer() - start_time, 5)
|
46 |
+
|
47 |
+
# Return the prediction dictionary and prediction time
|
48 |
+
return pred_labels_and_probs, pred_time
|
49 |
+
|
50 |
+
### 4. Gradio app ###
|
51 |
+
|
52 |
+
# Create title, description and article strings
|
53 |
+
title = "FoodVision Mini 🍕🥩🍣"
|
54 |
+
description = "An EfficientNetB1 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
55 |
+
article = "I will add it soon wait.."
|
56 |
+
|
57 |
+
# Create examples list from "examples/" directory
|
58 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
59 |
+
|
60 |
+
# Create the Gradio demo
|
61 |
+
demo = gr.Interface(fn=predict, # mapping function from input to output
|
62 |
+
inputs=gr.Image(type="pil"), # what are the inputs?
|
63 |
+
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
|
64 |
+
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|
65 |
+
# Create examples list from "examples/" directory
|
66 |
+
examples=example_list,
|
67 |
+
title=title,
|
68 |
+
description=description,
|
69 |
+
article=article)
|
70 |
+
|
71 |
+
# Launch the demo!
|
72 |
+
demo.launch()
|
examples/2582289.jpg
ADDED
![]() |
examples/3622237.jpg
ADDED
![]() |
examples/592799.jpg
ADDED
![]() |
model.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
def create_effnetb1_model(num_classes:int=3,seed:int=42):
|
8 |
+
"""
|
9 |
+
Creates an EFFicientNetB1 feature extractor model and transforms.
|
10 |
+
:param num_classes: number of classes in classifier head.
|
11 |
+
Defaults to 3.
|
12 |
+
:param seed: random seed value.
|
13 |
+
Defaults to 42.
|
14 |
+
:return: feature extractor model.
|
15 |
+
transforms (torchvision.transforms): EffNetB1 image transforms.
|
16 |
+
"""
|
17 |
+
# 1. Setup pretrained EffNetB1 weights
|
18 |
+
weigts = torchvision.models.EfficientNet_B1_Weights.DEFAULT
|
19 |
+
# 2. Get EffNetB2 transforms
|
20 |
+
transforms= weigts.transforms()
|
21 |
+
|
22 |
+
# 3. Setup pretrained model
|
23 |
+
model=torchvision.models.efficientnet_b1(weights= "DEFAULT")
|
24 |
+
|
25 |
+
# 4. Freeze the base layers in the model (this will freeze all layers to begin with)
|
26 |
+
for param in model.parameters():
|
27 |
+
param.requires_grad=False
|
28 |
+
|
29 |
+
# 5. Change classifier head with random seed for reproducibility
|
30 |
+
torch.manual_seed(seed)
|
31 |
+
model.classifier=nn.Sequential(nn.Dropout(p=0.2,inplace=True),
|
32 |
+
nn.Linear(in_features=1280,out_features=num_classes))
|
33 |
+
return model,transforms
|
pretrained_effnetb1_feature_extractor_pizza_steak_sushi_20_percent.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2b5243d08f41bba16d28533e61036a578e494d4bf31b5f2705c78121cc7b297
|
3 |
+
size 26536531
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.13.1
|
2 |
+
torchvision==0.14.1
|
3 |
+
gradio==3.16.2
|