Electricarchmage's picture
please work
b698bb4 verified
raw
history blame
2.56 kB
import gradio as gr
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
# Load model and tokenizer from Hugging Face Hub
model_name = "Electricarchmage/cookbookgpt"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# Set the pad_token to eos_token and padding_side to 'left'
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Define the respond function
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Preparing the messages for context (the history and the new message)
messages = [{"role": "system", "content": system_message}]
# Convert history to the required format with 'role' and 'content'
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize the input and generate a response
inputs = tokenizer([msg["content"] for msg in messages], return_tensors="pt", padding=True, truncation=True)
attention_mask = inputs.get('attention_mask', torch.ones_like(inputs['input_ids'])) # Default to ones if not provided
# Generate output tokens
output = model.generate(
inputs["input_ids"],
attention_mask=attention_mask,
max_length=max_tokens + len(inputs["input_ids"][0]),
temperature=temperature,
top_p=top_p,
num_return_sequences=1,
do_sample=True, # Enable sampling for more dynamic responses
no_repeat_ngram_size=2,
)
# Decode the output tokens into text
response = tokenizer.decode(output[0], skip_special_tokens=True)
# Extract only the assistant's reply
assistant_reply = response.split("Assistant:")[-1].strip()
return assistant_reply
# Define the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
# Launch the app
if __name__ == "__main__":
demo.launch()