|
import gradio as gr |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
import torch |
|
import time |
|
|
|
|
|
model_name = "Electricarchmage/cookbookgpt" |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = 'left' |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
inputs = tokenizer([msg["content"] for msg in messages], return_tensors="pt", padding=True, truncation=True) |
|
attention_mask = inputs.get('attention_mask', torch.ones_like(inputs['input_ids'])) |
|
|
|
start_time = time.time() |
|
|
|
|
|
try: |
|
output = model.generate( |
|
inputs["input_ids"], |
|
attention_mask=attention_mask, |
|
max_length=max_tokens + len(inputs["input_ids"][0]), |
|
temperature=temperature, |
|
top_p=top_p, |
|
num_return_sequences=1, |
|
do_sample=True, |
|
no_repeat_ngram_size=2, |
|
) |
|
except Exception as e: |
|
return f"Error during generation: {str(e)}" |
|
|
|
generation_time = time.time() - start_time |
|
|
|
|
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
assistant_reply = response.split("Assistant:")[-1].strip() |
|
|
|
|
|
return f"Response: {assistant_reply}\nGeneration time: {generation_time:.2f} seconds" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|