fixed maybe??
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("Electricarchmage/cookbookgpt")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -15,34 +15,39 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
messages
|
19 |
-
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
-
|
23 |
if val[1]:
|
24 |
-
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
@@ -59,6 +64,6 @@ demo = gr.ChatInterface(
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load model and tokenizer from Hugging Face Hub
|
5 |
+
model_name = "Electricarchmage/cookbookgpt"
|
6 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
8 |
|
9 |
+
# Define the respond function
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
+
# Preparing the messages for context (the history and the new message)
|
19 |
+
input_text = system_message + "\n"
|
20 |
+
|
21 |
for val in history:
|
22 |
if val[0]:
|
23 |
+
input_text += f"User: {val[0]}\n"
|
24 |
if val[1]:
|
25 |
+
input_text += f"Assistant: {val[1]}\n"
|
26 |
|
27 |
+
input_text += f"User: {message}\nAssistant:"
|
28 |
|
29 |
+
# Tokenize the input and generate a response
|
30 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=True)
|
31 |
|
32 |
+
# Generate output tokens
|
33 |
+
output = model.generate(
|
34 |
+
inputs["input_ids"],
|
35 |
+
max_length=max_tokens + len(inputs["input_ids"][0]),
|
36 |
temperature=temperature,
|
37 |
top_p=top_p,
|
38 |
+
num_return_sequences=1,
|
39 |
+
no_repeat_ngram_size=2,
|
40 |
+
)
|
41 |
|
42 |
+
# Decode the output tokens into text
|
43 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
|
45 |
+
# Extract only the assistant's reply
|
46 |
+
assistant_reply = response.split("Assistant:")[-1].strip()
|
47 |
|
48 |
+
return assistant_reply
|
49 |
+
|
50 |
+
# Define the Gradio interface
|
51 |
demo = gr.ChatInterface(
|
52 |
respond,
|
53 |
additional_inputs=[
|
|
|
64 |
],
|
65 |
)
|
66 |
|
67 |
+
# Launch the app
|
68 |
if __name__ == "__main__":
|
69 |
demo.launch()
|