hopefully fixed
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
3 |
|
4 |
# Load model and tokenizer from Hugging Face Hub
|
5 |
model_name = "Electricarchmage/cookbookgpt"
|
@@ -16,26 +17,30 @@ def respond(
|
|
16 |
top_p,
|
17 |
):
|
18 |
# Preparing the messages for context (the history and the new message)
|
19 |
-
|
20 |
|
|
|
21 |
for val in history:
|
22 |
if val[0]:
|
23 |
-
|
24 |
if val[1]:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
# Tokenize the input and generate a response
|
30 |
-
inputs = tokenizer(
|
|
|
31 |
|
32 |
# Generate output tokens
|
33 |
output = model.generate(
|
34 |
inputs["input_ids"],
|
|
|
35 |
max_length=max_tokens + len(inputs["input_ids"][0]),
|
36 |
temperature=temperature,
|
37 |
top_p=top_p,
|
38 |
num_return_sequences=1,
|
|
|
39 |
no_repeat_ngram_size=2,
|
40 |
)
|
41 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
import torch
|
4 |
|
5 |
# Load model and tokenizer from Hugging Face Hub
|
6 |
model_name = "Electricarchmage/cookbookgpt"
|
|
|
17 |
top_p,
|
18 |
):
|
19 |
# Preparing the messages for context (the history and the new message)
|
20 |
+
messages = [{"role": "system", "content": system_message}]
|
21 |
|
22 |
+
# Convert history to the required format with 'role' and 'content'
|
23 |
for val in history:
|
24 |
if val[0]:
|
25 |
+
messages.append({"role": "user", "content": val[0]})
|
26 |
if val[1]:
|
27 |
+
messages.append({"role": "assistant", "content": val[1]})
|
28 |
+
|
29 |
+
messages.append({"role": "user", "content": message})
|
30 |
|
31 |
# Tokenize the input and generate a response
|
32 |
+
inputs = tokenizer([msg["content"] for msg in messages], return_tensors="pt", padding=True, truncation=True)
|
33 |
+
attention_mask = inputs.get('attention_mask', torch.ones_like(inputs['input_ids'])) # Default to ones if not provided
|
34 |
|
35 |
# Generate output tokens
|
36 |
output = model.generate(
|
37 |
inputs["input_ids"],
|
38 |
+
attention_mask=attention_mask,
|
39 |
max_length=max_tokens + len(inputs["input_ids"][0]),
|
40 |
temperature=temperature,
|
41 |
top_p=top_p,
|
42 |
num_return_sequences=1,
|
43 |
+
do_sample=True, # Enable sampling for more dynamic responses
|
44 |
no_repeat_ngram_size=2,
|
45 |
)
|
46 |
|