File size: 5,778 Bytes
031ec86
 
 
 
 
 
 
 
 
 
 
 
 
 
09cbd66
031ec86
 
 
2f8c080
031ec86
 
09cbd66
 
 
 
 
 
 
 
 
031ec86
 
 
09cbd66
031ec86
 
 
 
 
 
 
 
 
 
 
 
 
 
09cbd66
031ec86
 
2f8c080
031ec86
09cbd66
031ec86
 
09cbd66
031ec86
 
 
09cbd66
031ec86
 
09cbd66
031ec86
 
 
 
 
 
 
 
09cbd66
 
 
 
031ec86
 
 
09cbd66
031ec86
 
 
09cbd66
031ec86
 
 
 
09cbd66
 
 
 
 
031ec86
 
 
09cbd66
 
031ec86
09cbd66
 
 
 
 
031ec86
09cbd66
031ec86
 
09cbd66
031ec86
 
 
09cbd66
 
031ec86
 
09cbd66
031ec86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09cbd66
031ec86
 
 
 
09cbd66
 
 
 
 
 
 
 
 
031ec86
 
 
 
 
 
09cbd66
031ec86
 
 
 
 
 
 
 
 
 
 
 
 
 
09cbd66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
from PIL import Image
from torchvision import transforms
import mediapipe as mp
import numpy as np
import math
import requests

import gradio as gr

model_url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_static_ResNet50_AffectNet.pth"
model_path = "FER_static_ResNet50_AffectNet.pth"

response = requests.get(model_url, stream=True)
with open(model_path, "wb") as file:
    for chunk in response.iter_content(chunk_size=8192):
        file.write(chunk)

pth_model = torch.jit.load(model_path)
pth_model.eval()

DICT_EMO = {
    0: "Neutral",
    1: "Happiness",
    2: "Sadness",
    3: "Surprise",
    4: "Fear",
    5: "Disgust",
    6: "Anger",
}

mp_face_mesh = mp.solutions.face_mesh


def pth_processing(fp):
    class PreprocessInput(torch.nn.Module):
        def init(self):
            super(PreprocessInput, self).init()

        def forward(self, x):
            x = x.to(torch.float32)
            x = torch.flip(x, dims=(0,))
            x[0, :, :] -= 91.4953
            x[1, :, :] -= 103.8827
            x[2, :, :] -= 131.0912
            return x

    def get_img_torch(img):
        ttransform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
        img = img.resize((224, 224), Image.Resampling.NEAREST)
        img = ttransform(img)
        img = torch.unsqueeze(img, 0)
        return img

    return get_img_torch(fp)


def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
    x_px = min(math.floor(normalized_x * image_width), image_width - 1)
    y_px = min(math.floor(normalized_y * image_height), image_height - 1)

    return x_px, y_px


def get_box(fl, w, h):
    idx_to_coors = {}
    for idx, landmark in enumerate(fl.landmark):
        landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)

        if landmark_px:
            idx_to_coors[idx] = landmark_px

    x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
    y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
    endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
    endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])

    (startX, startY) = (max(0, x_min), max(0, y_min))
    (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

    return startX, startY, endX, endY


def predict(inp):
    inp = np.array(inp)
    h, w = inp.shape[:2]

    with mp_face_mesh.FaceMesh(
        max_num_faces=1,
        refine_landmarks=False,
        min_detection_confidence=0.5,
        min_tracking_confidence=0.5,
    ) as face_mesh:
        results = face_mesh.process(inp)
        if results.multi_face_landmarks:
            for fl in results.multi_face_landmarks:
                startX, startY, endX, endY = get_box(fl, w, h)
                cur_face = inp[startY:endY, startX:endX]
                cur_face_n = pth_processing(Image.fromarray(cur_face))
                prediction = (
                    torch.nn.functional.softmax(pth_model(cur_face_n), dim=1)
                    .detach()
                    .numpy()[0]
                )
                confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}

    return cur_face, confidences


def clear():
    return (
        gr.Image(value=None, type="pil"),
        gr.Image(value=None, scale=1, elem_classes="dl2"),
        gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
    )


style = """
    div.dl1 div.upload-container {
        height: 350px;
        max-height: 350px;
    }

    div.dl2 {
        max-height: 200px;
    }

    div.dl2 img {
        max-height: 200px;
    }

    .submit {
        display: inline-block;
        padding: 10px 20px;
        font-size: 16px;
        font-weight: bold;
        text-align: center;
        text-decoration: none;
        cursor: pointer;
        border: var(--button-border-width) solid var(--button-primary-border-color);
        background: var(--button-primary-background-fill);
        color: var(--button-primary-text-color);
        border-radius: 8px;
        transition: all 0.3s ease;
    }
    
    .submit[disabled] {
        cursor: not-allowed;
        opacity: 0.6;
    }
    
    .submit:hover:not([disabled]) {
        border-color: var(--button-primary-border-color-hover);
        background: var(--button-primary-background-fill-hover);
        color: var(--button-primary-text-color-hover);
    }
    
    .submit:active:not([disabled]) {
        transform: scale(0.98);
    }
"""

with gr.Blocks(css=style) as demo:
    with gr.Row():
        with gr.Column(scale=2, elem_classes="dl1"):
            input_image = gr.Image(type="pil")
            with gr.Row():
                submit = gr.Button(
                    value="Submit", interactive=True, scale=1, elem_classes="submit"
                )
                clear_btn = gr.Button(value="Clear", interactive=True, scale=1)
        with gr.Column(scale=1, elem_classes="dl4"):
            output_image = gr.Image(scale=1, elem_classes="dl2")
            output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
    gr.Examples(
        [
            "images/fig7.jpg",
            "images/fig1.jpg",
            "images/fig2.jpg",
            "images/fig3.jpg",
            "images/fig4.jpg",
            "images/fig5.jpg",
            "images/fig6.jpg",
        ],
        [input_image],
    )

    submit.click(
        fn=predict,
        inputs=[input_image],
        outputs=[output_image, output_label],
        queue=True,
    )
    clear_btn.click(
        fn=clear,
        inputs=[],
        outputs=[
            input_image,
            output_image,
            output_label,
        ],
        queue=True,
    )

if __name__ == "__main__":
    demo.queue(api_open=False).launch(share=False)