|
""" |
|
File: model.py |
|
Author: Elena Ryumina and Dmitry Ryumin |
|
Description: This module provides functions for loading and processing a pre-trained deep learning model |
|
for facial expression recognition. |
|
License: MIT License |
|
""" |
|
|
|
import torch |
|
import requests |
|
from PIL import Image |
|
from torchvision import transforms |
|
|
|
|
|
from app.config import config_data |
|
|
|
|
|
def load_model(model_url, model_path): |
|
try: |
|
with requests.get(model_url, stream=True) as response: |
|
with open(model_path, "wb") as file: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
file.write(chunk) |
|
return torch.jit.load(model_path).eval() |
|
except Exception as e: |
|
print(f"Error loading model: {e}") |
|
return None |
|
|
|
|
|
pth_model = load_model(config_data.model_url, config_data.model_path) |
|
|
|
|
|
def pth_processing(fp): |
|
class PreprocessInput(torch.nn.Module): |
|
def init(self): |
|
super(PreprocessInput, self).init() |
|
|
|
def forward(self, x): |
|
x = x.to(torch.float32) |
|
x = torch.flip(x, dims=(0,)) |
|
x[0, :, :] -= 91.4953 |
|
x[1, :, :] -= 103.8827 |
|
x[2, :, :] -= 131.0912 |
|
return x |
|
|
|
def get_img_torch(img, target_size=(224, 224)): |
|
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()]) |
|
img = img.resize(target_size, Image.Resampling.NEAREST) |
|
img = transform(img) |
|
img = torch.unsqueeze(img, 0) |
|
return img |
|
|
|
return get_img_torch(fp) |
|
|