ElenaRyumina
commited on
Update App (#1)
Browse files- Update app.py (09cbd669454d7d163b73102702af21efe0b6f411)
app.py
CHANGED
@@ -12,17 +12,26 @@ model_url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolv
|
|
12 |
model_path = "FER_static_ResNet50_AffectNet.pth"
|
13 |
|
14 |
response = requests.get(model_url, stream=True)
|
15 |
-
with open(model_path,
|
16 |
for chunk in response.iter_content(chunk_size=8192):
|
17 |
file.write(chunk)
|
18 |
|
19 |
pth_model = torch.jit.load(model_path)
|
20 |
pth_model.eval()
|
21 |
|
22 |
-
DICT_EMO = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
mp_face_mesh = mp.solutions.face_mesh
|
25 |
|
|
|
26 |
def pth_processing(fp):
|
27 |
class PreprocessInput(torch.nn.Module):
|
28 |
def init(self):
|
@@ -37,24 +46,22 @@ def pth_processing(fp):
|
|
37 |
return x
|
38 |
|
39 |
def get_img_torch(img):
|
40 |
-
|
41 |
-
ttransform = transforms.Compose([
|
42 |
-
transforms.PILToTensor(),
|
43 |
-
PreprocessInput()
|
44 |
-
])
|
45 |
img = img.resize((224, 224), Image.Resampling.NEAREST)
|
46 |
img = ttransform(img)
|
47 |
img = torch.unsqueeze(img, 0)
|
48 |
return img
|
|
|
49 |
return get_img_torch(fp)
|
50 |
|
|
|
51 |
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
52 |
-
|
53 |
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
54 |
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
55 |
-
|
56 |
return x_px, y_px
|
57 |
|
|
|
58 |
def get_box(fl, w, h):
|
59 |
idx_to_coors = {}
|
60 |
for idx, landmark in enumerate(fl.landmark):
|
@@ -63,44 +70,51 @@ def get_box(fl, w, h):
|
|
63 |
if landmark_px:
|
64 |
idx_to_coors[idx] = landmark_px
|
65 |
|
66 |
-
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:,0])
|
67 |
-
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:,1])
|
68 |
-
endX = np.max(np.asarray(list(idx_to_coors.values()))[:,0])
|
69 |
-
endY = np.max(np.asarray(list(idx_to_coors.values()))[:,1])
|
70 |
|
71 |
(startX, startY) = (max(0, x_min), max(0, y_min))
|
72 |
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
73 |
-
|
74 |
return startX, startY, endX, endY
|
75 |
|
76 |
-
def predict(inp):
|
77 |
|
|
|
78 |
inp = np.array(inp)
|
79 |
h, w = inp.shape[:2]
|
80 |
|
81 |
with mp_face_mesh.FaceMesh(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
results = face_mesh.process(inp)
|
87 |
if results.multi_face_landmarks:
|
88 |
for fl in results.multi_face_landmarks:
|
89 |
-
startX, startY, endX, endY
|
90 |
-
cur_face = inp[startY:endY, startX:
|
91 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
92 |
-
prediction =
|
|
|
|
|
|
|
|
|
93 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
94 |
-
|
95 |
return cur_face, confidences
|
96 |
|
|
|
97 |
def clear():
|
98 |
return (
|
99 |
gr.Image(value=None, type="pil"),
|
100 |
-
gr.Image(value=None,scale=1, elem_classes="dl2"),
|
101 |
-
gr.Label(value=None,num_top_classes=3, scale=1, elem_classes="dl3")
|
102 |
)
|
103 |
|
|
|
104 |
style = """
|
105 |
div.dl1 div.upload-container {
|
106 |
height: 350px;
|
@@ -154,26 +168,27 @@ with gr.Blocks(css=style) as demo:
|
|
154 |
submit = gr.Button(
|
155 |
value="Submit", interactive=True, scale=1, elem_classes="submit"
|
156 |
)
|
157 |
-
clear_btn = gr.Button(
|
158 |
-
value="Clear", interactive=True, scale=1
|
159 |
-
)
|
160 |
with gr.Column(scale=1, elem_classes="dl4"):
|
161 |
output_image = gr.Image(scale=1, elem_classes="dl2")
|
162 |
output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
|
163 |
gr.Examples(
|
164 |
-
[
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
[input_image],
|
167 |
)
|
168 |
-
|
169 |
|
170 |
submit.click(
|
171 |
fn=predict,
|
172 |
inputs=[input_image],
|
173 |
-
outputs=[
|
174 |
-
output_image,
|
175 |
-
output_label
|
176 |
-
],
|
177 |
queue=True,
|
178 |
)
|
179 |
clear_btn.click(
|
@@ -188,4 +203,4 @@ with gr.Blocks(css=style) as demo:
|
|
188 |
)
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
-
demo.queue(api_open=False).launch(share=False)
|
|
|
12 |
model_path = "FER_static_ResNet50_AffectNet.pth"
|
13 |
|
14 |
response = requests.get(model_url, stream=True)
|
15 |
+
with open(model_path, "wb") as file:
|
16 |
for chunk in response.iter_content(chunk_size=8192):
|
17 |
file.write(chunk)
|
18 |
|
19 |
pth_model = torch.jit.load(model_path)
|
20 |
pth_model.eval()
|
21 |
|
22 |
+
DICT_EMO = {
|
23 |
+
0: "Neutral",
|
24 |
+
1: "Happiness",
|
25 |
+
2: "Sadness",
|
26 |
+
3: "Surprise",
|
27 |
+
4: "Fear",
|
28 |
+
5: "Disgust",
|
29 |
+
6: "Anger",
|
30 |
+
}
|
31 |
|
32 |
mp_face_mesh = mp.solutions.face_mesh
|
33 |
|
34 |
+
|
35 |
def pth_processing(fp):
|
36 |
class PreprocessInput(torch.nn.Module):
|
37 |
def init(self):
|
|
|
46 |
return x
|
47 |
|
48 |
def get_img_torch(img):
|
49 |
+
ttransform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
|
|
|
|
|
|
|
|
|
50 |
img = img.resize((224, 224), Image.Resampling.NEAREST)
|
51 |
img = ttransform(img)
|
52 |
img = torch.unsqueeze(img, 0)
|
53 |
return img
|
54 |
+
|
55 |
return get_img_torch(fp)
|
56 |
|
57 |
+
|
58 |
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
|
|
59 |
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
60 |
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
61 |
+
|
62 |
return x_px, y_px
|
63 |
|
64 |
+
|
65 |
def get_box(fl, w, h):
|
66 |
idx_to_coors = {}
|
67 |
for idx, landmark in enumerate(fl.landmark):
|
|
|
70 |
if landmark_px:
|
71 |
idx_to_coors[idx] = landmark_px
|
72 |
|
73 |
+
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
|
74 |
+
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
|
75 |
+
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
|
76 |
+
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
|
77 |
|
78 |
(startX, startY) = (max(0, x_min), max(0, y_min))
|
79 |
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
80 |
+
|
81 |
return startX, startY, endX, endY
|
82 |
|
|
|
83 |
|
84 |
+
def predict(inp):
|
85 |
inp = np.array(inp)
|
86 |
h, w = inp.shape[:2]
|
87 |
|
88 |
with mp_face_mesh.FaceMesh(
|
89 |
+
max_num_faces=1,
|
90 |
+
refine_landmarks=False,
|
91 |
+
min_detection_confidence=0.5,
|
92 |
+
min_tracking_confidence=0.5,
|
93 |
+
) as face_mesh:
|
94 |
results = face_mesh.process(inp)
|
95 |
if results.multi_face_landmarks:
|
96 |
for fl in results.multi_face_landmarks:
|
97 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
98 |
+
cur_face = inp[startY:endY, startX:endX]
|
99 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
100 |
+
prediction = (
|
101 |
+
torch.nn.functional.softmax(pth_model(cur_face_n), dim=1)
|
102 |
+
.detach()
|
103 |
+
.numpy()[0]
|
104 |
+
)
|
105 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
106 |
+
|
107 |
return cur_face, confidences
|
108 |
|
109 |
+
|
110 |
def clear():
|
111 |
return (
|
112 |
gr.Image(value=None, type="pil"),
|
113 |
+
gr.Image(value=None, scale=1, elem_classes="dl2"),
|
114 |
+
gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
|
115 |
)
|
116 |
|
117 |
+
|
118 |
style = """
|
119 |
div.dl1 div.upload-container {
|
120 |
height: 350px;
|
|
|
168 |
submit = gr.Button(
|
169 |
value="Submit", interactive=True, scale=1, elem_classes="submit"
|
170 |
)
|
171 |
+
clear_btn = gr.Button(value="Clear", interactive=True, scale=1)
|
|
|
|
|
172 |
with gr.Column(scale=1, elem_classes="dl4"):
|
173 |
output_image = gr.Image(scale=1, elem_classes="dl2")
|
174 |
output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
|
175 |
gr.Examples(
|
176 |
+
[
|
177 |
+
"images/fig7.jpg",
|
178 |
+
"images/fig1.jpg",
|
179 |
+
"images/fig2.jpg",
|
180 |
+
"images/fig3.jpg",
|
181 |
+
"images/fig4.jpg",
|
182 |
+
"images/fig5.jpg",
|
183 |
+
"images/fig6.jpg",
|
184 |
+
],
|
185 |
[input_image],
|
186 |
)
|
|
|
187 |
|
188 |
submit.click(
|
189 |
fn=predict,
|
190 |
inputs=[input_image],
|
191 |
+
outputs=[output_image, output_label],
|
|
|
|
|
|
|
192 |
queue=True,
|
193 |
)
|
194 |
clear_btn.click(
|
|
|
203 |
)
|
204 |
|
205 |
if __name__ == "__main__":
|
206 |
+
demo.queue(api_open=False).launch(share=False)
|