""" File: model.py Author: Elena Ryumina and Dmitry Ryumin Description: This module provides functions for loading and processing a pre-trained deep learning model for facial expression recognition. License: MIT License """ import torch import requests from PIL import Image from torchvision import transforms # Importing necessary components for the Gradio app from app.config import config_data def load_model(model_url, model_path): try: with requests.get(model_url, stream=True) as response: with open(model_path, "wb") as file: for chunk in response.iter_content(chunk_size=8192): file.write(chunk) return torch.jit.load(model_path).eval() except Exception as e: print(f"Error loading model: {e}") return None pth_model_static = load_model(config_data.model_static_url, config_data.model_static_path).to(config_data.DEVICE) pth_model_dynamic = load_model(config_data.model_dynamic_url, config_data.model_dynamic_path).to(config_data.DEVICE) def pth_processing(fp): class PreprocessInput(torch.nn.Module): def init(self): super(PreprocessInput, self).init() def forward(self, x): x = x.to(torch.float32) x = torch.flip(x, dims=(0,)) x[0, :, :] -= 91.4953 x[1, :, :] -= 103.8827 x[2, :, :] -= 131.0912 return x def get_img_torch(img, target_size=(224, 224)): transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()]) img = img.resize(target_size, Image.Resampling.NEAREST) img = transform(img) img = torch.unsqueeze(img, 0) return img return get_img_torch(fp)