Spaces:
Runtime error
Runtime error
""" | |
taken from: https://github.com/karpathy/minGPT/ | |
GPT model: | |
- the initial stem consists of a combination of token encoding and a positional encoding | |
- the meat of it is a uniform sequence of Transformer blocks | |
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block | |
- all blocks feed into a central residual pathway similar to resnets | |
- the final decoder is a linear projection into a vanilla Softmax classifier | |
""" | |
import math | |
import logging | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from transformers import top_k_top_p_filtering | |
logger = logging.getLogger(__name__) | |
class GPTConfig: | |
""" base GPT config, params common to all GPT versions """ | |
embd_pdrop = 0.1 | |
resid_pdrop = 0.1 | |
attn_pdrop = 0.1 | |
def __init__(self, vocab_size, block_size, **kwargs): | |
self.vocab_size = vocab_size | |
self.block_size = block_size | |
for k,v in kwargs.items(): | |
setattr(self, k, v) | |
class GPT1Config(GPTConfig): | |
""" GPT-1 like network roughly 125M params """ | |
n_layer = 12 | |
n_head = 12 | |
n_embd = 768 | |
class CausalSelfAttention(nn.Module): | |
""" | |
A vanilla multi-head masked self-attention layer with a projection at the end. | |
It is possible to use torch.nn.MultiheadAttention here but I am including an | |
explicit implementation here to show that there is nothing too scary here. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads | |
self.key = nn.Linear(config.n_embd, config.n_embd) | |
self.query = nn.Linear(config.n_embd, config.n_embd) | |
self.value = nn.Linear(config.n_embd, config.n_embd) | |
# regularization | |
self.attn_drop = nn.Dropout(config.attn_pdrop) | |
self.resid_drop = nn.Dropout(config.resid_pdrop) | |
# output projection | |
self.proj = nn.Linear(config.n_embd, config.n_embd) | |
# causal mask to ensure that attention is only applied to the left in the input sequence | |
mask = torch.tril(torch.ones(config.block_size, | |
config.block_size)) | |
if hasattr(config, "n_unmasked"): | |
mask[:config.n_unmasked, :config.n_unmasked] = 1 | |
self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) | |
self.n_head = config.n_head | |
def forward(self, x, layer_past=None): | |
B, T, C = x.size() | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
present = torch.stack((k, v)) | |
if layer_past is not None: | |
past_key, past_value = layer_past | |
k = torch.cat((past_key, k), dim=-2) | |
v = torch.cat((past_value, v), dim=-2) | |
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
if layer_past is None: | |
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) | |
att = F.softmax(att, dim=-1) | |
att = self.attn_drop(att) | |
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.resid_drop(self.proj(y)) | |
return y, present # TODO: check that this does not break anything | |
class Block(nn.Module): | |
""" an unassuming Transformer block """ | |
def __init__(self, config): | |
super().__init__() | |
self.ln1 = nn.LayerNorm(config.n_embd) | |
self.ln2 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.mlp = nn.Sequential( | |
nn.Linear(config.n_embd, 4 * config.n_embd), | |
nn.GELU(), # nice | |
nn.Linear(4 * config.n_embd, config.n_embd), | |
nn.Dropout(config.resid_pdrop), | |
) | |
def forward(self, x, layer_past=None, return_present=False): | |
# TODO: check that training still works | |
if return_present: assert not self.training | |
# layer past: tuple of length two with B, nh, T, hs | |
attn, present = self.attn(self.ln1(x), layer_past=layer_past) | |
x = x + attn | |
x = x + self.mlp(self.ln2(x)) | |
if layer_past is not None or return_present: | |
return x, present | |
return x | |
class GPT(nn.Module): | |
""" the full GPT language model, with a context size of block_size """ | |
def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, | |
embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): | |
super().__init__() | |
config = GPTConfig(vocab_size=vocab_size, block_size=block_size, | |
embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, | |
n_layer=n_layer, n_head=n_head, n_embd=n_embd, | |
n_unmasked=n_unmasked) | |
# input embedding stem | |
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) | |
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
# transformer | |
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) | |
# decoder head | |
self.ln_f = nn.LayerNorm(config.n_embd) | |
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.block_size = config.block_size | |
self.apply(self._init_weights) | |
self.config = config | |
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) | |
def get_block_size(self): | |
return self.block_size | |
def _init_weights(self, module): | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def forward(self, idx, embeddings=None, targets=None): | |
# forward the GPT model | |
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector | |
if embeddings is not None: # prepend explicit embeddings | |
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) | |
t = token_embeddings.shape[1] | |
assert t <= self.block_size, "Cannot forward, model block size is exhausted." | |
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector | |
x = self.drop(token_embeddings + position_embeddings) | |
x = self.blocks(x) | |
x = self.ln_f(x) | |
logits = self.head(x) | |
# if we are given some desired targets also calculate the loss | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None): | |
# inference only | |
assert not self.training | |
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector | |
if embeddings is not None: # prepend explicit embeddings | |
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) | |
if past is not None: | |
assert past_length is not None | |
past = torch.cat(past, dim=-2) # n_layer, 2, b, nh, len_past, dim_head | |
past_shape = list(past.shape) | |
expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head] | |
assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}" | |
position_embeddings = self.pos_emb[:, past_length, :] # each position maps to a (learnable) vector | |
else: | |
position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :] | |
x = self.drop(token_embeddings + position_embeddings) | |
presents = [] # accumulate over layers | |
for i, block in enumerate(self.blocks): | |
x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True) | |
presents.append(present) | |
x = self.ln_f(x) | |
logits = self.head(x) | |
# if we are given some desired targets also calculate the loss | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss, torch.stack(presents) # _, _, n_layer, 2, b, nh, 1, dim_head | |
class DummyGPT(nn.Module): | |
# for debugging | |
def __init__(self, add_value=1): | |
super().__init__() | |
self.add_value = add_value | |
def forward(self, idx): | |
return idx + self.add_value, None | |
class CodeGPT(nn.Module): | |
"""Takes in semi-embeddings""" | |
def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, | |
embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): | |
super().__init__() | |
config = GPTConfig(vocab_size=vocab_size, block_size=block_size, | |
embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, | |
n_layer=n_layer, n_head=n_head, n_embd=n_embd, | |
n_unmasked=n_unmasked) | |
# input embedding stem | |
self.tok_emb = nn.Linear(in_channels, config.n_embd) | |
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
# transformer | |
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) | |
# decoder head | |
self.ln_f = nn.LayerNorm(config.n_embd) | |
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.block_size = config.block_size | |
self.apply(self._init_weights) | |
self.config = config | |
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) | |
def get_block_size(self): | |
return self.block_size | |
def _init_weights(self, module): | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def forward(self, idx, embeddings=None, targets=None): | |
# forward the GPT model | |
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector | |
if embeddings is not None: # prepend explicit embeddings | |
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) | |
t = token_embeddings.shape[1] | |
assert t <= self.block_size, "Cannot forward, model block size is exhausted." | |
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector | |
x = self.drop(token_embeddings + position_embeddings) | |
x = self.blocks(x) | |
x = self.taming_cinln_f(x) | |
logits = self.head(x) | |
# if we are given some desired targets also calculate the loss | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
#### sampling utils | |
def top_k_logits(logits, k): | |
v, ix = torch.topk(logits, k) | |
out = logits.clone() | |
out[out < v[:, [-1]]] = -float('Inf') | |
return out | |
def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): | |
""" | |
take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in | |
the sequence, feeding the predictions back into the model each time. Clearly the sampling | |
has quadratic complexity unlike an RNN that is only linear, and has a finite context window | |
of block_size, unlike an RNN that has an infinite context window. | |
""" | |
block_size = model.get_block_size() | |
model.eval() | |
for k in range(steps): | |
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed | |
logits, _ = model(x_cond) | |
# pluck the logits at the final step and scale by temperature | |
logits = logits[:, -1, :] / temperature | |
# optionally crop probabilities to only the top k options | |
if top_k is not None: | |
logits = top_k_logits(logits, top_k) | |
# apply softmax to convert to probabilities | |
probs = F.softmax(logits, dim=-1) | |
# sample from the distribution or take the most likely | |
if sample: | |
ix = torch.multinomial(probs, num_samples=1) | |
else: | |
_, ix = torch.topk(probs, k=1, dim=-1) | |
# append to the sequence and continue | |
x = torch.cat((x, ix), dim=1) | |
return x | |
def sample_with_past(x, model, steps, temperature=1., sample_logits=True, | |
top_k=None, top_p=None, callback=None): | |
# x is conditioning | |
sample = x | |
cond_len = x.shape[1] | |
past = None | |
for n in range(steps): | |
if callback is not None: | |
callback(n) | |
logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1)) | |
if past is None: | |
past = [present] | |
else: | |
past.append(present) | |
logits = logits[:, -1, :] / temperature | |
if top_k is not None: | |
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
probs = F.softmax(logits, dim=-1) | |
if not sample_logits: | |
_, x = torch.topk(probs, k=1, dim=-1) | |
else: | |
x = torch.multinomial(probs, num_samples=1) | |
# append to the sequence and continue | |
sample = torch.cat((sample, x), dim=1) | |
del past | |
sample = sample[:, cond_len:] # cut conditioning off | |
return sample | |
#### clustering utils | |
class KMeans(nn.Module): | |
def __init__(self, ncluster=512, nc=3, niter=10): | |
super().__init__() | |
self.ncluster = ncluster | |
self.nc = nc | |
self.niter = niter | |
self.shape = (3,32,32) | |
self.register_buffer("C", torch.zeros(self.ncluster,nc)) | |
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) | |
def is_initialized(self): | |
return self.initialized.item() == 1 | |
def initialize(self, x): | |
N, D = x.shape | |
assert D == self.nc, D | |
c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random | |
for i in range(self.niter): | |
# assign all pixels to the closest codebook element | |
a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) | |
# move each codebook element to be the mean of the pixels that assigned to it | |
c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) | |
# re-assign any poorly positioned codebook elements | |
nanix = torch.any(torch.isnan(c), dim=1) | |
ndead = nanix.sum().item() | |
print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) | |
c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters | |
self.C.copy_(c) | |
self.initialized.fill_(1) | |
def forward(self, x, reverse=False, shape=None): | |
if not reverse: | |
# flatten | |
bs,c,h,w = x.shape | |
assert c == self.nc | |
x = x.reshape(bs,c,h*w,1) | |
C = self.C.permute(1,0) | |
C = C.reshape(1,c,1,self.ncluster) | |
a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices | |
return a | |
else: | |
# flatten | |
bs, HW = x.shape | |
""" | |
c = self.C.reshape( 1, self.nc, 1, self.ncluster) | |
c = c[bs*[0],:,:,:] | |
c = c[:,:,HW*[0],:] | |
x = x.reshape(bs, 1, HW, 1) | |
x = x[:,3*[0],:,:] | |
x = torch.gather(c, dim=3, index=x) | |
""" | |
x = self.C[x] | |
x = x.permute(0,2,1) | |
shape = shape if shape is not None else self.shape | |
x = x.reshape(bs, *shape) | |
return x | |