Ahsen Khaliq commited on
Commit
2a2b7e0
Β·
1 Parent(s): dabf774

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -198,7 +198,7 @@ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
198
  print('Using device:', device)
199
  model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
200
  perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
201
- def inference(text, seed, step_size, max_iterations, width, height, init_image, init_weight, target_images):
202
  all_frames = []
203
  size=[width, height]
204
  texts = text
@@ -239,7 +239,7 @@ def inference(text, seed, step_size, max_iterations, width, height, init_image,
239
  # perceptor.visual.positional_embedding.data=clamp_with_grad(clock,0,1)
240
  cut_size = perceptor.visual.input_resolution
241
  f = 2**(model.decoder.num_resolutions - 1)
242
- make_cutouts = MakeCutouts(cut_size, args.cutn, cut_pow=args.cut_pow)
243
  toksX, toksY = size[0] // f, size[1] // f
244
  sideX, sideY = toksX * f, toksY * f
245
  if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
@@ -378,7 +378,9 @@ gr.Interface(
378
  gr.inputs.Slider(minimum=200, maximum=600, default=256, label='height', step=1),
379
  gr.inputs.Image(type="file", label="Initial Image (Optional)", optional=True),
380
  gr.inputs.Slider(minimum=0.0, maximum=15.0, default=0.0, label='Initial Weight', step=1.0),
381
- gr.inputs.Image(type="file", label="Target Image (Optional)", optional=True)
 
 
382
  ],
383
  [gr.outputs.Image(type="numpy", label="Output Image"),gr.outputs.Video(label="Output Video")],
384
  title=title,
 
198
  print('Using device:', device)
199
  model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
200
  perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
201
+ def inference(text, seed, step_size, max_iterations, width, height, init_image, init_weight, target_images, cutn, cut_pow):
202
  all_frames = []
203
  size=[width, height]
204
  texts = text
 
239
  # perceptor.visual.positional_embedding.data=clamp_with_grad(clock,0,1)
240
  cut_size = perceptor.visual.input_resolution
241
  f = 2**(model.decoder.num_resolutions - 1)
242
+ make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow)
243
  toksX, toksY = size[0] // f, size[1] // f
244
  sideX, sideY = toksX * f, toksY * f
245
  if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
 
378
  gr.inputs.Slider(minimum=200, maximum=600, default=256, label='height', step=1),
379
  gr.inputs.Image(type="file", label="Initial Image (Optional)", optional=True),
380
  gr.inputs.Slider(minimum=0.0, maximum=15.0, default=0.0, label='Initial Weight', step=1.0),
381
+ gr.inputs.Image(type="file", label="Target Image (Optional)", optional=True),
382
+ gr.inputs.Slider(minimum=1, maximum=4, default=1, label='cutn', step=1),
383
+ gr.inputs.Slider(minimum=1.0, maximum=4.0, default=1.0, label='cut_pow', step=1.0)
384
  ],
385
  [gr.outputs.Image(type="numpy", label="Output Image"),gr.outputs.Video(label="Output Video")],
386
  title=title,