File size: 1,972 Bytes
ca389f6
 
 
d61c863
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed4bb6
 
d61c863
4ed4bb6
d61c863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
os.system('pip install gradio --upgrade')
os.system('pip freeze')
import torch
import gradio as gr
model = torch.hub.load("PeterL1n/RobustVideoMatting", "mobilenetv3") # or "resnet50"

convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter")

def inference(video):
  convert_video(
      model,                           # The loaded model, can be on any device (cpu or cuda).
      input_source=video,        # A video file or an image sequence directory.
      input_resize=None,       # [Optional] Resize the input (also the output).
      downsample_ratio=0.25,           # [Optional] If None, make downsampled max size be 512px.
      output_type='video',             # Choose "video" or "png_sequence"
      output_composition='com.mp4',    # File path if video; directory path if png sequence.
      output_alpha= None,          # [Optional] Output the raw alpha prediction.
      output_foreground= None,     # [Optional] Output the raw foreground prediction.
      output_video_mbps=4,             # Output video mbps. Not needed for png sequence.
      seq_chunk=6,                    # Process n frames at once for better parallelism.
      num_workers=1,                   # Only for image sequence input. Reader threads.
      progress=True                    # Print conversion progress.
  )
  return 'com.mp4'
  
title = "Anime2Sketch"
description = "demo for Anime2Sketch. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.05703'>Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis</a> | <a href='https://github.com/Mukosame/Anime2Sketch'>Github Repo</a></p>"

gr.Interface(
    inference, 
    gr.inputs.Video(label="Input"), 
    gr.outputs.Video(label="Output"),
    title=title,
    description=description,
    article=article,
    enable_queue=True
    ).launch(debug=True)