Ahsen Khaliq commited on
Commit
35814d2
·
1 Parent(s): 18cbd98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -85,7 +85,7 @@ model_config.update({
85
  'class_cond': False,
86
  'diffusion_steps': 1000,
87
  'rescale_timesteps': True,
88
- 'timestep_respacing': '90', # Modify this value to decrease the number of
89
  # timesteps.
90
  'image_size': 256,
91
  'learn_sigma': True,
@@ -217,6 +217,6 @@ def inference(text, init_image, skip_timesteps):
217
  title = "CLIP Guided Diffusion HQ"
218
  description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
219
  article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
220
- iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=45, step=1, default=0, label="skip_timesteps")], outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists"]],
221
  enable_queue=True)
222
  iface.launch()
 
85
  'class_cond': False,
86
  'diffusion_steps': 1000,
87
  'rescale_timesteps': True,
88
+ 'timestep_respacing': '300', # Modify this value to decrease the number of
89
  # timesteps.
90
  'image_size': 256,
91
  'learn_sigma': True,
 
217
  title = "CLIP Guided Diffusion HQ"
218
  description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
219
  article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
220
+ iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=150, step=1, default=0, label="skip_timesteps")], outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists"]],
221
  enable_queue=True)
222
  iface.launch()