Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
·
641acff
1
Parent(s):
8784fa4
Update app.py
Browse files
app.py
CHANGED
@@ -78,7 +78,7 @@ def tv_loss(input):
|
|
78 |
def range_loss(input):
|
79 |
return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
|
80 |
|
81 |
-
def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing):
|
82 |
# Model settings
|
83 |
model_config = model_and_diffusion_defaults()
|
84 |
model_config.update({
|
@@ -126,7 +126,7 @@ def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, r
|
|
126 |
clip_guidance_scale = clip_guidance_scale # Controls how much the image should look like the prompt.
|
127 |
tv_scale = tv_scale # Controls the smoothness of the final output.
|
128 |
range_scale = range_scale # Controls how far out of range RGB values are allowed to be.
|
129 |
-
cutn =
|
130 |
n_batches = 1
|
131 |
if init_image:
|
132 |
init_image = init_image.name
|
@@ -221,6 +221,6 @@ def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, r
|
|
221 |
title = "CLIP Guided Diffusion HQ"
|
222 |
description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
223 |
article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
|
224 |
-
iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=45, step=1, default=
|
225 |
enable_queue=True)
|
226 |
iface.launch()
|
|
|
78 |
def range_loss(input):
|
79 |
return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
|
80 |
|
81 |
+
def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing, cutn):
|
82 |
# Model settings
|
83 |
model_config = model_and_diffusion_defaults()
|
84 |
model_config.update({
|
|
|
126 |
clip_guidance_scale = clip_guidance_scale # Controls how much the image should look like the prompt.
|
127 |
tv_scale = tv_scale # Controls the smoothness of the final output.
|
128 |
range_scale = range_scale # Controls how far out of range RGB values are allowed to be.
|
129 |
+
cutn = cutn
|
130 |
n_batches = 1
|
131 |
if init_image:
|
132 |
init_image = init_image.name
|
|
|
221 |
title = "CLIP Guided Diffusion HQ"
|
222 |
description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
223 |
article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
|
224 |
+
iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=45, step=1, default=10, label="skip_timesteps"), gr.inputs.Slider(minimum=0, maximum=3000, step=1, default=750, label="clip guidance scale (Controls how much the image should look like the prompt)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="tv_scale (Controls the smoothness of the final output)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="range_scale (Controls how far out of range RGB values are allowed to be)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="init_scale (This enhances the effect of the init image)"), gr.inputs.Number(default=0, label="Seed"), gr.inputs.Image(type="file", label='image prompt (optional)', optional=True), gr.inputs.Slider(minimum=50, maximum=500, step=1, default=50, label="timestep respacing"),gr.inputs.Slider(minimum=1, maximum=64, step=1, default=64, label="cutn")], outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists", None, 0, 1000, 150, 50, 0, 0, None, 90]],
|
225 |
enable_queue=True)
|
226 |
iface.launch()
|