Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
·
f619e7d
1
Parent(s):
46e5614
Update app.py
Browse files
app.py
CHANGED
@@ -85,7 +85,7 @@ model_config.update({
|
|
85 |
'class_cond': False,
|
86 |
'diffusion_steps': 1000,
|
87 |
'rescale_timesteps': True,
|
88 |
-
'timestep_respacing': '
|
89 |
# timesteps.
|
90 |
'image_size': 256,
|
91 |
'learn_sigma': True,
|
@@ -114,12 +114,12 @@ normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
|
|
114 |
std=[0.26862954, 0.26130258, 0.27577711])
|
115 |
lpips_model = lpips.LPIPS(net='vgg').to(device)
|
116 |
|
117 |
-
def inference(text, init_image, skip_timesteps):
|
118 |
all_frames = []
|
119 |
prompts = [text]
|
120 |
image_prompts = []
|
121 |
batch_size = 1
|
122 |
-
clip_guidance_scale =
|
123 |
tv_scale = 150 # Controls the smoothness of the final output.
|
124 |
range_scale = 50 # Controls how far out of range RGB values are allowed to be.
|
125 |
cutn = 16
|
@@ -208,7 +208,7 @@ def inference(text, init_image, skip_timesteps):
|
|
208 |
all_frames.append(img)
|
209 |
tqdm.write(f'Batch {i}, step {j}, output {k}:')
|
210 |
#display.display(display.Image(filename))
|
211 |
-
writer = imageio.get_writer('video.mp4', fps=
|
212 |
for im in all_frames:
|
213 |
writer.append_data(np.array(im))
|
214 |
writer.close()
|
@@ -217,6 +217,6 @@ def inference(text, init_image, skip_timesteps):
|
|
217 |
title = "CLIP Guided Diffusion HQ"
|
218 |
description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
219 |
article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
|
220 |
-
iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=
|
221 |
enable_queue=True)
|
222 |
iface.launch()
|
|
|
85 |
'class_cond': False,
|
86 |
'diffusion_steps': 1000,
|
87 |
'rescale_timesteps': True,
|
88 |
+
'timestep_respacing': '90', # Modify this value to decrease the number of
|
89 |
# timesteps.
|
90 |
'image_size': 256,
|
91 |
'learn_sigma': True,
|
|
|
114 |
std=[0.26862954, 0.26130258, 0.27577711])
|
115 |
lpips_model = lpips.LPIPS(net='vgg').to(device)
|
116 |
|
117 |
+
def inference(text, init_image, skip_timesteps, clip_guidance_scale):
|
118 |
all_frames = []
|
119 |
prompts = [text]
|
120 |
image_prompts = []
|
121 |
batch_size = 1
|
122 |
+
clip_guidance_scale = clip_guidance_scale # Controls how much the image should look like the prompt.
|
123 |
tv_scale = 150 # Controls the smoothness of the final output.
|
124 |
range_scale = 50 # Controls how far out of range RGB values are allowed to be.
|
125 |
cutn = 16
|
|
|
208 |
all_frames.append(img)
|
209 |
tqdm.write(f'Batch {i}, step {j}, output {k}:')
|
210 |
#display.display(display.Image(filename))
|
211 |
+
writer = imageio.get_writer('video.mp4', fps=5)
|
212 |
for im in all_frames:
|
213 |
writer.append_data(np.array(im))
|
214 |
writer.close()
|
|
|
217 |
title = "CLIP Guided Diffusion HQ"
|
218 |
description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
219 |
article = "<p style='text-align: center'> By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj' target='_blank'>Colab</a></p>"
|
220 |
+
iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=45, step=1, default=0, label="skip_timesteps"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=700, label="clip guidance scale (Controls how much the image should look like the prompt.)")], outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists"]],
|
221 |
enable_queue=True)
|
222 |
iface.launch()
|