File size: 5,610 Bytes
0b54eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ff99a
 
0d7396d
500c928
0b54eef
 
 
 
 
 
01a6ead
0b54eef
0d7396d
 
01a6ead
 
 
0d7396d
 
 
 
 
 
 
 
 
 
01a6ead
0d7396d
 
01a6ead
 
0d7396d
 
 
 
 
 
 
 
 
0b54eef
5a4a670
 
 
 
 
 
 
 
 
 
 
 
 
0b54eef
9e4384d
0b54eef
 
 
 
7133300
 
 
0b54eef
500c928
 
7271491
0b54eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4a670
0b54eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee91641
0b54eef
 
 
0d7396d
365c69b
0d7396d
 
 
0b54eef
 
 
 
 
81ff99a
0b54eef
 
 
5a4a670
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import uuid
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from langchain_core.messages import BaseMessage, HumanMessage, trim_messages
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from pydantic import BaseModel
from typing import Optional
import json
from sse_starlette.sse import EventSourceResponse
from datetime import datetime
from fastapi import APIRouter
from langchain_core.runnables import RunnableConfig
from langchain_core.prompts import ChatPromptTemplate
from typing import Any
from prompts import PRESENTATION_SYSTEM_PROMPT

router = APIRouter(
    prefix="/presentation",
    tags=["presentation"]
)

import json

@tool(response_format="content_and_artifact")
def plan(slides_json: str) -> tuple[str, dict]:
    """Create a presentation plan from a JSON string of slides (keys=slide numbers, values=content)."""
    try:
        slides = json.loads(slides_json)
        print(slides)
        return (
            f"Plan created with {len(slides)} slides: {', '.join(slides.keys())}.",
            {"slides_plan_json": slides_json}
        )
    except Exception as e:
        return (
            f"Invalid JSON format. Please provide a valid JSON string {str(e)[:100]}.",
            None
        )

@tool(response_format="content_and_artifact") 
def create_slide(slide_number: int, content: str, config: RunnableConfig) -> tuple[str, dict]:
    """Create a slide with the given number and content."""
    # Integration with slide creation API or template would go here
    slide = {
        "number": slide_number,
        "content": content,
        "created_at": datetime.now().isoformat()
    }
    return (
        f"Slide {slide_number} created",
        {"slide": slide}
    )

@tool(parse_docstring=True)
def execute_python(expression: str) -> str:
    """Execute a python mathematic expression. Returns the result of the expression or an error message if execution fails.

    Args:
        expression: The python expression to execute.
    """
    try:
        result = eval(expression)
        return f"The result of the expression is {result}"
    except Exception as e:
        return f"Error executing the expression: {str(e)}"

memory = MemorySaver()
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
prompt = ChatPromptTemplate.from_messages([
    ("system", """You are a Presentation Creation Assistant. Your task is to help users create effective presentations.
    Follow these steps:
    1. First use the plan tool to create an outline of the presentation
    2. Wait for user input to proceed with the plan or update the current plan based on input.
    3. Then use create_slide tool for each slide in sequence
    4. Guide the user through the presentation creation process
    
    Guidelines for Presentation Slides Creation
    {{PRESENTATION_SYSTEM_PROMPT}}
    Today's date is {{datetime.now().strftime('%Y-%m-%d')}}"""),
    ("placeholder", "{messages}"),
])

def state_modifier(state) -> list[BaseMessage]:
    try:
        formatted_prompt = prompt.invoke({
            "messages": state["messages"]
        })
        return trim_messages(
            formatted_prompt,
            token_counter=len,
            max_tokens=16000,
            strategy="last",
            start_on="human",
            include_system=True,
            allow_partial=False,
        )
    except Exception as e:
        print(f"Error in state modifier: {str(e)}")
        return state["messages"]

# Create the agent with presentation tools
agent = create_react_agent(
    model,
    tools=[plan, create_slide, execute_python],
    checkpointer=memory,
    state_modifier=state_modifier,
)

class ChatInput(BaseModel):
    message: str
    thread_id: Optional[str] = None

@router.post("/chat")
async def chat(input_data: ChatInput):
    thread_id = input_data.thread_id or str(uuid.uuid4())
    
    config = {
        "configurable": {
            "thread_id": thread_id
        }
    }
    
    input_message = HumanMessage(content=input_data.message)
    
    async def generate():
        async for event in agent.astream_events(
            {"messages": [input_message]}, 
            config,
            version="v2"
        ):
            kind = event["event"]
            
            if kind == "on_chat_model_stream":
                content = event["data"]["chunk"].content
                if content:
                    yield f"{json.dumps({'type': 'token', 'content': content})}\n"

            elif kind == "on_tool_start":
                tool_input = str(event['data'].get('input', ''))
                yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}\n"
            
            elif kind == "on_tool_end":
                print(event['data'])
                tool_output = event['data'].get('output', '')
                artifact_output = tool_output.artifact if tool_output.artifact else None
                yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output.pretty_repr(), 'artifacts_data': artifact_output})}\n"
                print(tool_output.pretty_repr())
    return EventSourceResponse(
        generate(),
        media_type="text/event-stream"
    )

@router.get("/health")
async def health_check():
    return {"status": "healthy"}


app = FastAPI()
app.include_router(router)

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)