Spaces:
Running
Running
File size: 5,610 Bytes
0b54eef 81ff99a 0d7396d 500c928 0b54eef 01a6ead 0b54eef 0d7396d 01a6ead 0d7396d 01a6ead 0d7396d 01a6ead 0d7396d 0b54eef 5a4a670 0b54eef 9e4384d 0b54eef 7133300 0b54eef 500c928 7271491 0b54eef 5a4a670 0b54eef ee91641 0b54eef 0d7396d 365c69b 0d7396d 0b54eef 81ff99a 0b54eef 5a4a670 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import uuid
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from langchain_core.messages import BaseMessage, HumanMessage, trim_messages
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from pydantic import BaseModel
from typing import Optional
import json
from sse_starlette.sse import EventSourceResponse
from datetime import datetime
from fastapi import APIRouter
from langchain_core.runnables import RunnableConfig
from langchain_core.prompts import ChatPromptTemplate
from typing import Any
from prompts import PRESENTATION_SYSTEM_PROMPT
router = APIRouter(
prefix="/presentation",
tags=["presentation"]
)
import json
@tool(response_format="content_and_artifact")
def plan(slides_json: str) -> tuple[str, dict]:
"""Create a presentation plan from a JSON string of slides (keys=slide numbers, values=content)."""
try:
slides = json.loads(slides_json)
print(slides)
return (
f"Plan created with {len(slides)} slides: {', '.join(slides.keys())}.",
{"slides_plan_json": slides_json}
)
except Exception as e:
return (
f"Invalid JSON format. Please provide a valid JSON string {str(e)[:100]}.",
None
)
@tool(response_format="content_and_artifact")
def create_slide(slide_number: int, content: str, config: RunnableConfig) -> tuple[str, dict]:
"""Create a slide with the given number and content."""
# Integration with slide creation API or template would go here
slide = {
"number": slide_number,
"content": content,
"created_at": datetime.now().isoformat()
}
return (
f"Slide {slide_number} created",
{"slide": slide}
)
@tool(parse_docstring=True)
def execute_python(expression: str) -> str:
"""Execute a python mathematic expression. Returns the result of the expression or an error message if execution fails.
Args:
expression: The python expression to execute.
"""
try:
result = eval(expression)
return f"The result of the expression is {result}"
except Exception as e:
return f"Error executing the expression: {str(e)}"
memory = MemorySaver()
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
prompt = ChatPromptTemplate.from_messages([
("system", """You are a Presentation Creation Assistant. Your task is to help users create effective presentations.
Follow these steps:
1. First use the plan tool to create an outline of the presentation
2. Wait for user input to proceed with the plan or update the current plan based on input.
3. Then use create_slide tool for each slide in sequence
4. Guide the user through the presentation creation process
Guidelines for Presentation Slides Creation
{{PRESENTATION_SYSTEM_PROMPT}}
Today's date is {{datetime.now().strftime('%Y-%m-%d')}}"""),
("placeholder", "{messages}"),
])
def state_modifier(state) -> list[BaseMessage]:
try:
formatted_prompt = prompt.invoke({
"messages": state["messages"]
})
return trim_messages(
formatted_prompt,
token_counter=len,
max_tokens=16000,
strategy="last",
start_on="human",
include_system=True,
allow_partial=False,
)
except Exception as e:
print(f"Error in state modifier: {str(e)}")
return state["messages"]
# Create the agent with presentation tools
agent = create_react_agent(
model,
tools=[plan, create_slide, execute_python],
checkpointer=memory,
state_modifier=state_modifier,
)
class ChatInput(BaseModel):
message: str
thread_id: Optional[str] = None
@router.post("/chat")
async def chat(input_data: ChatInput):
thread_id = input_data.thread_id or str(uuid.uuid4())
config = {
"configurable": {
"thread_id": thread_id
}
}
input_message = HumanMessage(content=input_data.message)
async def generate():
async for event in agent.astream_events(
{"messages": [input_message]},
config,
version="v2"
):
kind = event["event"]
if kind == "on_chat_model_stream":
content = event["data"]["chunk"].content
if content:
yield f"{json.dumps({'type': 'token', 'content': content})}\n"
elif kind == "on_tool_start":
tool_input = str(event['data'].get('input', ''))
yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}\n"
elif kind == "on_tool_end":
print(event['data'])
tool_output = event['data'].get('output', '')
artifact_output = tool_output.artifact if tool_output.artifact else None
yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output.pretty_repr(), 'artifacts_data': artifact_output})}\n"
print(tool_output.pretty_repr())
return EventSourceResponse(
generate(),
media_type="text/event-stream"
)
@router.get("/health")
async def health_check():
return {"status": "healthy"}
app = FastAPI()
app.include_router(router)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|