File size: 4,031 Bytes
0b54eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import uuid
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from langchain_core.messages import BaseMessage, HumanMessage, trim_messages
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from pydantic import BaseModel
from typing import Optional
import json
from sse_starlette.sse import EventSourceResponse
from datetime import datetime
from fastapi import APIRouter

router = APIRouter(
    prefix="/presentation",
    tags=["presentation"]
)


@tool
def plan(input: dict) -> str:
    """Create a presentation plan with numbered slides and their descriptions.
    Args:
        input: Dictionary containing presentation details
    Returns:
        A dictionary with slide numbers as keys and descriptions as values
    """
    return "plan created"

@tool
def create_slide(slideno: int, content: str) -> str:
    """Create a single presentation slide.
    Args:
        slideno: The slide number to create
        content: The content for the slide
    Returns:
        Confirmation of slide creation
    """
    return f"slide {slideno} created"

memory = MemorySaver()
model = ChatOpenAI(model="gpt-4-turbo-preview", streaming=True)
prompt = ChatPromptTemplate.from_messages([
    ("system", """You are a Presentation Creation Assistant. Your task is to help users create effective presentations.
    Follow these steps:
    1. First use the plan tool to create an outline of the presentation
    2. Then use create_slide tool for each slide in sequence
    3. Guide the user through the presentation creation process
    
    Today's date is {datetime.now().strftime('%Y-%m-%d')}"""),
    ("placeholder", "{messages}"),
])

def state_modifier(state) -> list[BaseMessage]:
    try:
        formatted_prompt = prompt.invoke({
            "messages": state["messages"]
        })
        return trim_messages(
            formatted_prompt,
            token_counter=len,
            max_tokens=16000,
            strategy="last",
            start_on="human",
            include_system=True,
            allow_partial=False,
        )
    except Exception as e:
        print(f"Error in state modifier: {str(e)}")
        return state["messages"]

# Create the agent with presentation tools
agent = create_react_agent(
    model,
    tools=[plan, create_slide],
    checkpointer=memory,
    state_modifier=state_modifier,
)

class ChatInput(BaseModel):
    message: str
    thread_id: Optional[str] = None

@router.post("/chat")
async def chat(input_data: ChatInput):
    thread_id = input_data.thread_id or str(uuid.uuid4())
    
    config = {
        "configurable": {
            "thread_id": thread_id
        }
    }
    
    input_message = HumanMessage(content=input_data.message)
    
    async def generate():
        async for event in agent.astream_events(
            {"messages": [input_message]}, 
            config,
            version="v2"
        ):
            kind = event["event"]
            
            if kind == "on_chat_model_stream":
                content = event["data"]["chunk"].content
                if content:
                    yield f"{json.dumps({'type': 'token', 'content': content})}\n"

            elif kind == "on_tool_start":
                tool_input = event['data'].get('input', '')
                yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}\n"
            
            elif kind == "on_tool_end":
                tool_output = event['data'].get('output', '')
                yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output})}\n"

    return EventSourceResponse(
        generate(),
        media_type="text/event-stream"
    )

@app.get("/health")
async def health_check():
    return {"status": "healthy"}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)