Spaces:
Sleeping
Sleeping
File size: 10,621 Bytes
caf8c54 5dcd140 caf8c54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
yf_docs = """
# YFinance Documentation
## Single Ticker Usage
```python
import yfinance as yf
ticker = yf.Ticker('MSFT')
```
## Multi-Ticker Usage
### Initialization
```python
import yfinance as yf
tickers = yf.Tickers('MSFT AAPL GOOG')
```
### Download Historical Data
Get historical market data for multiple tickers:
```python
# Method 1: Using Tickers object
tickers = yf.Tickers('MSFT AAPL GOOG')
data = tickers.download(period='1mo')
# Method 2: Using download function directly
data = yf.download(['MSFT', 'AAPL', 'GOOG'], period='1mo')
```
Returns:
```python
DataFrame with columns: [('Close', 'AAPL'), ('Close', 'GOOG'), ('Close', 'MSFT'), ('Dividends', 'AAPL'), ('Dividends', 'GOOG'), ('Dividends', 'MSFT'), ('High', 'AAPL'), ('High', 'GOOG'), ('High', 'MSFT'), ('Low', 'AAPL'), ('Low', 'GOOG'), ('Low', 'MSFT'), ('Open', 'AAPL'), ('Open', 'GOOG'), ('Open', 'MSFT'), ('Stock Splits', 'AAPL'), ('Stock Splits', 'GOOG'), ('Stock Splits', 'MSFT'), ('Volume', 'AAPL'), ('Volume', 'GOOG'), ('Volume', 'MSFT')]
Shape: (21, 21)
```
### News
Get news for multiple tickers:
```python
tickers = yf.Tickers('MSFT AAPL GOOG')
news = tickers.news()
```
Returns:
```python
- MSFT: list
- AAPL: list
- GOOG: list
```
### Accessing Individual Tickers
Access individual ticker data from a multi-ticker object:
```python
tickers = yf.Tickers('MSFT AAPL GOOG')
msft_info = tickers.tickers['MSFT'].info
aapl_history = tickers.tickers['AAPL'].history(period='1mo')
```
## Single Ticker Methods
### Info
```python
ticker.info
```
Returns:
```python
- address1: str
- city: str
- state: str
- zip: str
- country: str
- phone: str
- website: str
- industry: str
- industryKey: str
- industryDisp: str
- sector: str
- sectorKey: str
- sectorDisp: str
- longBusinessSummary: str
- fullTimeEmployees: int
- companyOfficers: list
- auditRisk: int
- boardRisk: int
- compensationRisk: int
- shareHolderRightsRisk: int
- overallRisk: int
- governanceEpochDate: int
- compensationAsOfEpochDate: int
- irWebsite: str
- maxAge: int
- priceHint: int
- previousClose: float
- open: float
- dayLow: float
- dayHigh: float
- regularMarketPreviousClose: float
- regularMarketOpen: float
- regularMarketDayLow: float
- regularMarketDayHigh: float
- dividendRate: float
- dividendYield: float
- exDividendDate: int
- payoutRatio: float
- fiveYearAvgDividendYield: float
- beta: float
- trailingPE: float
- forwardPE: float
- volume: int
- regularMarketVolume: int
- averageVolume: int
- averageVolume10days: int
- averageDailyVolume10Day: int
- bid: float
- ask: float
- bidSize: int
- askSize: int
- marketCap: int
- fiftyTwoWeekLow: float
- fiftyTwoWeekHigh: float
- priceToSalesTrailing12Months: float
- fiftyDayAverage: float
- twoHundredDayAverage: float
- currency: str
- enterpriseValue: int
- profitMargins: float
- floatShares: int
- sharesOutstanding: int
- sharesShort: int
- sharesShortPriorMonth: int
- sharesShortPreviousMonthDate: int
- dateShortInterest: int
- sharesPercentSharesOut: float
- heldPercentInsiders: float
- heldPercentInstitutions: float
- shortRatio: float
- shortPercentOfFloat: float
- impliedSharesOutstanding: int
- bookValue: float
- priceToBook: float
- lastFiscalYearEnd: int
- nextFiscalYearEnd: int
- mostRecentQuarter: int
- earningsQuarterlyGrowth: float
- netIncomeToCommon: int
- trailingEps: float
- forwardEps: float
- lastSplitFactor: str
- lastSplitDate: int
- enterpriseToRevenue: float
- enterpriseToEbitda: float
- 52WeekChange: float
- SandP52WeekChange: float
- lastDividendValue: float
- lastDividendDate: int
- exchange: str
- quoteType: str
- symbol: str
- underlyingSymbol: str
- shortName: str
- longName: str
- firstTradeDateEpochUtc: int
- timeZoneFullName: str
- timeZoneShortName: str
- uuid: str
- messageBoardId: str
- gmtOffSetMilliseconds: int
- currentPrice: float
- targetHighPrice: float
- targetLowPrice: float
- targetMeanPrice: float
- targetMedianPrice: float
- recommendationMean: float
- recommendationKey: str
- numberOfAnalystOpinions: int
- totalCash: int
- totalCashPerShare: float
- ebitda: int
- totalDebt: int
- quickRatio: float
- currentRatio: float
- totalRevenue: int
- debtToEquity: float
- revenuePerShare: float
- returnOnAssets: float
- returnOnEquity: float
- grossProfits: int
- freeCashflow: int
- operatingCashflow: int
- earningsGrowth: float
- revenueGrowth: float
- grossMargins: float
- ebitdaMargins: float
- operatingMargins: float
- financialCurrency: str
- trailingPegRatio: float
```
### History
```python
ticker.history(period='1mo')
```
Returns:
```python
DataFrame with columns: ['Open', 'High', 'Low', 'Close', 'Volume', 'Dividends', 'Stock Splits']
Shape: (21, 7)
```
### Financial Statements
#### Income Statement
```python
ticker.income_stmt
```
Returns:
```python
DataFrame with columns: [Timestamp('2024-06-30 00:00:00'), Timestamp('2023-06-30 00:00:00'), Timestamp('2022-06-30 00:00:00'), Timestamp('2021-06-30 00:00:00')]
Shape: (47, 4)
```
## Common Parameters
### Period Options
- `1d`: 1 day
- `5d`: 5 days
- `1mo`: 1 month
- `3mo`: 3 months
- `6mo`: 6 months
- `1y`: 1 year
- `2y`: 2 years
- `5y`: 5 years
- `10y`: 10 years
- `ytd`: Year to date
- `max`: Maximum available data
### Interval Options
- `1m`: 1 minute
- `2m`: 2 minutes
- `5m`: 5 minutes
- `15m`: 15 minutes
- `30m`: 30 minutes
- `60m`: 60 minutes
- `90m`: 90 minutes
- `1h`: 1 hour
- `1d`: 1 day
- `5d`: 5 days
- `1wk`: 1 week
- `1mo`: 1 month
- `3mo`: 3 months
####
In dealing with financial data from multiple tickers, specifically using yfinance and pandas, the process can be broken down into a few key steps: downloading the data, organizing it in a structured format, and accessing it in a way that aligns with the user's needs. Below, the answer is organized into clear, actionable segments.
Downloading Data for Multiple Tickers
Direct Download and DataFrame Creation
Single Ticker, Single DataFrame Approach:
For individual tickers, the DataFrame downloaded directly from yfinance comes with single-level column names but lacks a ticker column. By iterating over each ticker, adding a ticker column, and then combining these into a single DataFrame, a clear structure for each ticker's data is maintained.
import yfinance as yf
import pandas as pd
tickerStrings = ['AAPL', 'MSFT']
df_list = []
for ticker in tickerStrings:
data = yf.download(ticker, group_by="Ticker", period='2d')
data['ticker'] = ticker # Add ticker column
df_list.append(data)
# Combine all dataframes into a single dataframe
df = pd.concat(df_list)
df.to_csv('ticker.csv')
Condensed Single DataFrame Approach:
Achieve the same result as above with a one-liner using list comprehension, streamlining the process of fetching and combining data.
# Download 2 days of data for each ticker in tickerStrings, add a 'ticker' column for identification, and concatenate into a single DataFrame with continuous indexing.
df = pd.concat([yf.download(ticker, group_by="Ticker", period='2d').assign(ticker=ticker) for ticker in tickerStrings], ignore_index=True)
Multi-Ticker, Structured DataFrame Approach
When downloading data for multiple tickers simultaneously, yfinance groups data by ticker, resulting in a DataFrame with multi-level column headers. This structure can be reorganized for easier access.
Unstacking Column Levels:
# Define a list of ticker symbols to download
tickerStrings = ['AAPL', 'MSFT']
# Download 2 days of data for each ticker, grouping by 'Ticker' to structure the DataFrame with multi-level columns
df = yf.download(tickerStrings, group_by='Ticker', period='2d')
# Transform the DataFrame: stack the ticker symbols to create a multi-index (Date, Ticker), then reset the 'Ticker' level to turn it into a column
df = df.stack(level=0).rename_axis(['Date', 'Ticker']).reset_index(level=1)
Handling CSV Files with Multi-Level Column Names
To read a CSV file that has been saved with yfinance data (which often includes multi-level column headers), adjustments are necessary to ensure the DataFrame is accessible in the desired format.
Reading and Adjusting Multi-Level Columns:
# Read the CSV file. The file has multi-level headers, hence header=[0, 1].
df = pd.read_csv('test.csv', header=[0, 1])
# Drop the first row as it contains only the Date information in one column, which is redundant after setting the index.
df.drop(index=0, inplace=True)
# Convert the 'Unnamed: 0_level_0', 'Unnamed: 0_level_1' column (which represents dates) to datetime format.
# This assumes the dates are in the 'YYYY-MM-DD' format.
df[('Unnamed: 0_level_0', 'Unnamed: 0_level_1')] = pd.to_datetime(df[('Unnamed: 0_level_0', 'Unnamed: 0_level_1')])
# Set the datetime column as the index of the DataFrame. This makes time series analysis more straightforward.
df.set_index(('Unnamed: 0_level_0', 'Unnamed: 0_level_1'), inplace=True)
# Clear the name of the index to avoid confusion, as it previously referred to the multi-level column names.
df.index.name = None
Flattening Multi-Level Columns for Easier Access
Depending on the initial structure of the DataFrame, multi-level columns many need to be flattened to a single level, adding clarity and simplicity to the dataset.
Flattening and Reorganizing Based on Ticker Level:
For DataFrames where the ticker symbol is at the top level of the column headers:
df.stack(level=0).rename_axis(['Date', 'Ticker']).reset_index(level=1)
If the ticker symbol is at the bottom level:
df.stack(level=1).rename_axis(['Date', 'Ticker']).reset_index(level=1)
Individual Ticker File Management
For those preferring to manage each ticker's data separately, downloading and saving each ticker's data to individual files can be a straightforward approach.
Downloading and Saving Individual Ticker Data:
for ticker in tickerStrings:
# Downloads historical market data from Yahoo Finance for the specified ticker.
# The period ('prd') and interval ('intv') for the data are specified as string variables.
data = yf.download(ticker, group_by="Ticker", period='prd', interval='intv')
# Adds a new column named 'ticker' to the DataFrame. This column is filled with the ticker symbol.
# This step is helpful for identifying the source ticker when multiple DataFrames are combined or analyzed separately.
data['ticker'] = ticker
# Saves the DataFrame to a CSV file. The file name is dynamically generated using the ticker symbol,
# allowing each ticker's data to be saved in a separate file for easy access and identification.
# For example, if the ticker symbol is 'AAPL', the file will be named 'ticker_AAPL.csv'.
data.tocsv(f'ticker{ticker}.csv')
""" |